1990年江西高考文科数学真题及答案

2023-10-27 · U3 上传 · 14页 · 259.5 K

1990年江西高考文科数学真题及答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.把所选项前的字母填在题后括号内.(2)cos275°+cos215°+cos75°cos15°的值等于 (3)如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于(6)已知上图是函数y=2sin(ωx+ψ)(│ψ│<)的图象,那么(7)设命题甲为:00,a≠1,解不等式loga(4+3x-x2)-loga(2x-1)>loga2.(25)设a≥0,在复数集C中解方程z2+2│z│=a.参考答案 一、选择题:本题考查基本知识和基本运算.(1)A  (2)C  (3)D  (4)B  (5)D(6)C  (7)A  (8)B  (9)A  (10)C(11)B (12)D (13)A (14)C (15)B二、填空题:本题考查基本知识和基本运算.三、解答题.(21)本小题考查等差数列、等比数列的概念和运用方程(组)解决问题的能力.依题意有由②式得    d=12-2a.     ③整理得a2-13a+36=0.解得 a1=4,a2=9.代入③式得  d1=4, d2=-6.从而得所求四个数为0,4,8,16或15,9,3,1.解法二:设四个数依次为x,y,12-y,16-x.依题意,有由①式得    x=3y-12.     ③将③式代入②式得   y(16-3y+12)=(12-y)2,整理得y2-13y+36=0.解得 y1=4,y2=9.代入③式得  x1=0,x2=15.从而得所求四个数为0,4,8,16或15,9,3,1.(22)本小题考查三角公式以及三角函数式的恒等变形和运算能力.解法一:由已知得两式相除得解法二:如图,不妨设0≤α≤β<2π,且点A的坐标是(cosα,sinα),点B的坐标是(cosβ,sinβ),则点A,B在单位圆x2+y2=1上.连结AB,若C是AB的中点,由题设知点C 连结OC,于是OC⊥AB,若设点D的坐标是(1,0),再连结OA,OB,则有解法三:由题设得   4(sinα+sinβ)=3(cosα+cosβ).将②式代入①式,可得sin(α-j)=sin(j-β).于是 α-j=(2k+1)π-(j-β)(k∈Z),或   α-j=2kπ+(j-β)(k∈Z).若   α-j=(2k+1)π-(j-β)(k∈Z),则α=β+(2k+1)π(k∈Z).于是 sinα=-sinβ,即sinα+sinβ=0.由此可知    α-j=2kπ+(j-β)(k∈Z).即   α+β=2j+2kπ(k∈Z).(23)本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力.解法一:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.又已知SC⊥DE,BE∩DE=E,∴ SC⊥面BDE,∴ SC⊥BD.又   ∵SA⊥底面ABC,BD在底面ABC上,∴SA⊥BD.而   SC∩SA=S,∴BD⊥面SAC.∵ DE=面SAC∩面BDE,DC=面SAC∩面BDC,∴ BD⊥DE,BD⊥DC.∴ ∠EDC是所求的二面角的平面角.∵ SA⊥底面ABC,∴SA⊥AB,SA⊥AC.又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.解法二:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.又已知SC⊥DE,BE∩DE=E.∴ SC⊥面BDE,∴ SC⊥BD.由于SA⊥底面ABC,且A是垂足,所以AC是SC在平面ABC上的射影.由三垂线定理的逆定理得BD⊥AC;又因E∈SC,AC是SC在平面ABC上的射影,所以E在平面ABC上的射影在AC上,由于D∈AC,所以DE在平面ABC上的射影在AC上,根据三垂线定理又得BD⊥DE.∵DE面BDE,DC面BDC,∴∠EDC是所求的二面角的平面角.以下同解法一.(24)本小题考查对数,不等式的基本知识及运算能力.解:原不等式可化为loga(4+3x-x2)>loga2(2x-1).  ①当01时,①式等价于(25)本小题考查复数与解方程等基本知识以及综合分析能力.解法一:设z=x+yi,代入原方程得于是原方程等价于方程组由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数或为纯虚数.下面分别加以讨论.情形1.若y=0,即求原方程的实数解z=x.此时,①式化为x2+2│x│=a.③(Ⅰ)令x>0,方程③变为x2+2x=a.     ④由此可知:当a=0时,方程④无正根;(Ⅱ)令x<0,方程③变为x2-2x=a.      ⑤由此可知:当a=0时,方程⑤无负根;(Ⅲ)令x=0,方程③变为0=a.  ⑥由此可知:当a=0时,方程⑥有零解x=0;当a>0时,方程⑥无零解.所以,原方程的实数解是:当a=0时,z=0;情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为-y2+2│y│=a.    ⑦(Ⅰ)令y>0,方程⑦变为-y2+2y=a,即(y-1)2=1-a.⑧由此可知:当a>1时,方程⑧无实根.从而, 当a=0时,方程⑧有正根      y=2;(Ⅱ)令y<0,方程⑦变为-y2-2y=a,即(y+1)2=1-a.⑨由此可知:当a>1时,方程⑨无实根.从而, 当a=0时,方程⑨有负根      y=-2;所以,原方程的纯虚数解是:当a=0时,z=±2i;而当a>1时,原方程无纯虚数解.解法二:设z=x+yi,代入原方程得于是原方程等价于方程组由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.情形1.若y=0,即求原方程的实数解z=x.此时,①式化为x2+2│x│=a.情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为-y2+2│y│=a.当a=0时,因y≠0,解方程④得│y│=2,即当a=0时,原方程的纯虚数解是z=±2i.即当01时,方程④无实根,所以这时原方程无纯虚数解.解法三:因为z2=-2│z│+a是实数,所以若原方程有解,则其解或为实数,或为纯虚数,即z=x或z=yi(y≠0).情形1.若z=x.以下同解法一或解法二中的情形1.情形2.若z=yi(y≠0).以下同解法一或解法二中的情形2.解法四:设z=r(cosθ+isinθ),其中r≥0,0≤θ<2π.代入原方程得r2cos2θ+2r+ir2sin2θ=a.于是原方程等价于方程组情形1.若r=0.①式变成0=a.  ③由此可知:当a=0时,r=0是方程③的解.当a>0时,方程③无解.所以, 当a=0时,原方程有解z=0;当a>0时,原方程无零解.(Ⅰ)当k=0,2时,对应的复数是z=±r.因cos2θ=1,故①式化为r2+2r=a. ④由此可知:当a=0时,方程④无正根;(Ⅱ)当k=1,3时,对应的复数是z=±ri.因cos2θ=-1,故①式化为-r2+2r=a,即(r-1)2=1-a,   ⑤由此可知:当a>1时,方程⑤无实根,从而无正根;从而, 当a=0时,方程⑤有正根      r=2;所以, 当a=o时,原方程有解z=±2i;当01时,原方程无纯虚数解.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐