2010年四川省高考数学试卷(文科)参考答案与试题解析 一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•四川)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于( )A.{3,4,5,6,7,8} B.{3,6} C.{4,7} D.{5,8} 2.(5分)(2010•四川)函数y=log2x的图象大致是( )A. B. C. D. 3.(5分)(2010•四川)抛物线y2=8x的焦点到准线的距离是( )A.1 B.2 C.4 D.8 4.(5分)(2010•四川)一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( )A.12,24,15,9 B.9,12,12,7 C.8,15,12,5 D.8,16,10,6 5.(5分)(2010•四川)函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是( )A.m=﹣2 B.m=2 C.m=﹣1 D.m=1 6.(5分)(2010•四川)设点M是线段BC的中点,点A在直线BC外,,,则=( )A.8 B.4 C.2 D.1 7.(5分)(2010•四川)将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A.y=sin(2x﹣) B.y=sin(2x﹣) C.y=sin(x﹣) D.y=sin(x﹣) 8.(5分)(2010•四川)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为( )A.甲车间加工原料10箱,乙车间加工原料60箱B.甲车间加工原料15箱,乙车间加工原料55箱C.甲车间加工原料18箱,乙车间加工原料50箱D.甲车间加工原料40箱,乙车间加工原料30箱 9.(5分)(2010•四川)由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是( )A.36 B.32 C.28 D.24 10.(5分)(2010•四川)椭圆的右焦点为F,其右准线与x轴的交点为A.在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是( )A.(0,] B.(0,] C.[,1) D.[,1) 11.(5分)(2010•四川)设a>b>0,则的最小值是( )A.1 B.2 C.3 D.4 12.(5分)(2010•四川)半径为R的球O的直径AB垂直于平面α,垂足为B,△BCD是平面α内边长为R的正三角形,线段AC、AD分别与球面交于点M、N,那么M、N两点间的球面距离是( )A. B. C. D. 二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2010•四川)(x﹣)4的展开式中的常数项为 (用数字作答) 14.(4分)(2010•四川)直线x﹣2y+5=0与圆x2+y2=8相交于A、B两点,则|AB|= . 15.(4分)(2010•四川)如图,二面角α﹣l﹣β的大小是60°,线段AB⊂α.B∈l,AB与l所成的角为30°.则AB与平面β所成的角的正弦值是 . 16.(4分)(2010•四川)设S为复数集C的非空子集.若对任意x,y∈S,都有x+y,x﹣y,xy∈S,则称S为封闭集.下列命题:①集合S={a+bi|(a,b为整数,i为虚数单位)}为封闭集;②若S为封闭集,则一定有0∈S;③封闭集一定是无限集;④若S为封闭集,则满足S⊆T⊆C的任意集合T也是封闭集.其中真命题是 .(写出所有真命题的序号) 三、解答题(共6小题,满分74分)17.(12分)(2010•四川)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料.(Ⅰ)求三位同学都没有中奖的概率;(Ⅱ)求三位同学中至少有两位没有中奖的概率. 18.(12分)(2010•四川)在正方体ABCD﹣A′B′C′D′中,点M是棱AA′的中点,点O是对角线BD′的中点.(Ⅰ)求证:OM为异面直线AA′和BD′的公垂线;(Ⅱ)求二面角M﹣BC′﹣B′的大小. 19.(12分)(2010•四川)(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ﹣sinαsinβ;②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.(Ⅱ)已知,求cos(α+β). 20.(12分)(2010•四川)已知等差数列{an}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=(4﹣an)qn﹣1(q≠0,n∈N*),求数列{bn}的前n项和Sn. 21.(12分)(2010•四川)已知定点A(﹣1,0),F(2,0),定直线l:x=,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N.(Ⅰ)求E的方程;(Ⅱ)试判断以线段MN为直径的圆是否过点F,并说明理由.22.(14分)(2010•四川)设(a>0且a≠1),g(x)是f(x)的反函数.(1)求g(x);(2)当x∈[2,6]时,恒有成立,求t的取值范围;(3)当0<a≤时,试比较f(1)+f(2)+…+f(n)与n+4的大小,并说明理由.2010年四川省高考数学试卷(文科)参考答案与试题解析 一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•四川)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于( )A.{3,4,5,6,7,8} B.{3,6} C.{4,7} D.{5,8}【考点】交集及其运算.菁优网版权所有【分析】根据交集的定义和运算法则进行计算.【解答】解:∵集合A={3,5,6,8},集合B={4,5,7,8},又∵集合A与集合B中的公共元素为5,8,∴A∩B={5,8},故选D.【点评】此题考查简单的集合的运算,集合在高考的考查是以基础题为主,题目比较容易,学习过程中我们应从基础出发. 2.(5分)(2010•四川)函数y=log2x的图象大致是( )A. B. C. D.【考点】对数函数的图像与性质.菁优网版权所有【分析】函数y=log2x为对数函数,又底数大于1,可选答案.【解答】解:函数y=log2x为对数函数,且2>1故选C.【点评】本题考查对数函数的图象问题,属基本题. 3.(5分)(2010•四川)抛物线y2=8x的焦点到准线的距离是( )A.1 B.2 C.4 D.8【考点】抛物线的简单性质.菁优网版权所有【专题】计算题.【分析】先根据抛物线的方程求出p的值,即可得到答案.【解答】解:由y2=2px=8x,知p=4,又焦点到准线的距离就是p.故选C.【点评】本题主要考查抛物线的基本性质.属基础题. 4.(5分)(2010•四川)一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( )A.12,24,15,9 B.9,12,12,7 C.8,15,12,5 D.8,16,10,6【考点】分层抽样方法.菁优网版权所有【分析】先求得比例,然后各层的总人数乘上这个比例,即得到样本中各层的人数.【解答】解:因为=,故各层中依次抽取的人数分别是=8,=16,=10,=6,故选D.【点评】本题主要考查分层抽样方法. 5.(5分)(2010•四川)函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是( )A.m=﹣2 B.m=2 C.m=﹣1 D.m=1【考点】函数的图象.菁优网版权所有【专题】计算题.【分析】根据二次函数对称轴定义和互为充要条件的条件去判断即可.【解答】解:函数f(x)=x2+mx+1的对称轴为x=﹣⇔﹣=1⇒m=﹣2.答案:A.【点评】本题考查了互为充要条件的关系和二次函数的对称轴问题. 6.(5分)(2010•四川)设点M是线段BC的中点,点A在直线BC外,,,则=( )A.8 B.4 C.2 D.1【考点】向量的线性运算性质及几何意义.菁优网版权所有【分析】先求出||=4,又因为=||=2=4,可得答案.【解答】解:由=16,得||=4,∵=||=4,而∴=2故选C.【点评】本题主要考查平面向量的线性运算,属基础题. 7.(5分)(2010•四川)将函数y=sinx的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A.y=sin(2x﹣) B.y=sin(2x﹣) C.y=sin(x﹣) D.y=sin(x﹣)【考点】函数y=Asin(ωx+φ)的图象变换.菁优网版权所有【专题】分析法.【分析】先根据左加右减进行左右平移,然后根据横坐标伸长到原来的2倍时w变为原来的倍进行横向变换.【解答】解:将函数y=sinx的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x﹣)再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是y=sin(x﹣).故选C.【点评】本题主要考查三角函数的平移变换.平移的原则是左加右减、上加下减. 8.(5分)(2010•四川)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为( )A.甲车间加工原料10箱,乙车间加工原料60箱B.甲车间加工原料15箱,乙车间加工原料55箱C.甲车间加工原料18箱,乙车间加工原料50箱D.甲车间加工原料40箱,乙车间加工原料30箱【考点】简单线性规划的应用.菁优网版权所有【专题】计算题;压轴题.【分析】本题考查的知识点是简单线性规划的应用,根据题意列出不等式组,找出目标函数【解答】解:设甲车间加工原料x箱,乙车间加工原料y箱,则目标函数z=280x+200y结合图象可得:当x=15,y=55时z最大.故选B.【点评】在解决线性规划问题是,我们常寻找边界点,代入验证确定最值 9.(5分)(2010•四川)由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是( )A.36 B.32 C.28 D.24【考点】排列、组合的实际应用.菁优网版权所有【专题】计算题.【分析】依题意,分①5在两端与②5不在两端两种情况,进而分析1、2两个数的情况数目,由分类计数的加法原理计算可得答案.【解答】解:如果5在两端,则1、2有三个位置可选,排法为2×A32A22=24种,如果5不在两端,则1、2只有两个位置可选,首先排5,有=3种,然后排1和2,有A22A22=12种,3×A22A22=12种,共计12+24=36种;故选A.【点评】本题考查排列、组合的应用,注意优先分析受限制的特殊元素与分类讨论的方法的使用. 10.(5分)(2010•四川)椭圆的右焦点为F,其右准线与x轴的交点为A.在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是( )A.(0,] B.(0,]
2010年四川高考文科数学试卷(word版)和答案
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片