2020年浙江省高考数学(含解析版)

2023-10-27 · U3 上传 · 10页 · 2 M

2020年浙江省高考数学试卷A.B.C.3D.6一、选择题(共10小题).6.已知空间中不过同一点的三条直线m,n,l,则“m,n,l在同一平面”是“m,n,l两两相交”的( )1.已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=( )A.充分不必要条件B.必要不充分条件A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}C.充分必要条件D.既不充分也不必要条件2.已知a∈R,若a﹣1+(a﹣2)i(i为虚数单位)是实数,则a=( )7.已知等差数列{an}的前n项和Sn,公差d≠0,≤1.记b1=S2,bn+1=Sn+2﹣S2n,n∈N*,下列等式不可能A.1B.﹣1C.2D.﹣2成立的是( )3.若实数x,y满足约束条件,则z=x+2y的取值范围是( )22A.2a4=a2+a6B.2b4=b2+b6C.a4=a2a8D.b4=b2b8A.(﹣∞,4]B.[4,+∞)C.[5,+∞)D.(﹣∞,+∞)8.已知点O(0,0),A(﹣2,0),B(2,0).设点P满足|PA|﹣|PB|=2,且P为函数y=3图象上4.函数y=xcosx+sinx在区间[﹣π,+π]的图象大致为( )的点,则|OP|=( )A.B.C.D.A.B.9.已知a,b∈R且ab≠0,若(x﹣a)(x﹣b)(x﹣2a﹣b)≥0在x≥0上恒成立,则( )A.a<0B.a>0C.b<0D.b>010.设集合S,T,S⊆N*,T⊆N*,S,T中至少有两个元素,且S,T满足:①对于任意x,y∈S,若x≠y,都有xy∈T;②对于任意x,y∈T,若x<y,则∈S;下列命题正确的是( )C.D.A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有4个元素5.某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是( )D.若S有3个元素,则S∪T有5个元素二、填空题:本大题共7小题,共36分。多空题每小题4分;单空题每小题4分。11.已知数列{an}满足an=,则S3= .5234512.设(1+2x)=a1+a2x+a3x+a4x+a5x+a6x,则a5= ;a1+a2+a3= .13.已知tanθ=2,则cos2θ= ;tan(θ﹣)= .14.已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为 .222215.设直线l:y=kx+b(k>0),圆C1:x+y=1,C2:(x﹣4)+y=1,若直线l与C1,C2都相切,则k= ;b= .16.一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则P(ξ=0)= ;E(ξ)= .17.设,为单位向量,满足|2﹣|≤,=+,=3+,设,的夹角为θ,则cos2θ的最小值为 .三、解答题:本大题共5小题,共74分。解答应写出文字说明,证明过程或演算步骤。18.在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2bsinA=a.22.已知1<a≤2,函数f(x)=ex﹣x﹣a,其中e=2.71828…为自然对数的底数.(Ⅰ)求角B;(Ⅰ)证明:函数y=f(x)在(0,+∞)上有唯一零点;(Ⅱ)求cosA+cosB+cosC的取值范围.(Ⅱ)记x0为函数y=f(x)在(0,+∞)上的零点,证明:19.如图,三棱台DEF﹣ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC=2BC.(ⅰ)≤x0≤;(Ⅰ)证明:EF⊥DB;(Ⅱ)求DF与面DBC所成角的正弦值.(ⅱ)x0f()≥(e﹣1)(a﹣1)a.20.已知数列{an},{bn},{cn}中,a1=b1=c1=1,cn+1=an+1﹣an,cn+1=•cn(n∈N*).(Ⅰ)若数列{bn}为等比数列,且公比q>0,且b1+b2=6b3,求q与an的通项公式;(Ⅱ)若数列{bn}为等差数列,且公差d>0,证明:c1+c2+…+cn<1+.2221.如图,已知椭圆C1:+y=1,抛物线C2:y=2px(p>0),点A是椭圆C1与抛物线C2的交点,过点A的直线l交椭圆C1于点B,交抛物线C2于M(B,M不同于A).(Ⅰ)若p=,求抛物线C2的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.参考答案一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=( )A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}【分析】直接利用交集的运算法则求解即可.解:集合P={x|1<x<4},Q={x|2<x<3},4.函数y=xcosx+sinx在区间[﹣π,+π]的图象大致为( )则P∩Q={x|2<x<3}.故选:B.2.已知a∈R,若a﹣1+(a﹣2)i(i为虚数单位)是实数,则a=( )A.B.A.1B.﹣1C.2D.﹣2【分析】利用复数的虚部为0,求解即可.解:a∈R,若a﹣1+(a﹣2)i(i为虚数单位)是实数,可得a﹣2=0,解得a=2.C.D.故选:C.3.若实数x,y满足约束条件,则z=x+2y的取值范围是( )A.(﹣∞,4]B.[4,+∞)C.[5,+∞)D.(﹣∞,+∞)【分析】先判断函数的奇偶性,再判断函数值的特点.【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;结合图象判断目标函数z=x+2y的取值解:y=f(x)=xcosx+sinx,范围.则f(﹣x)=﹣xcosx﹣sinx=﹣f(x),解:画出实数x,y满足约束条件所示的平面区域,如图:∴f(x)为奇函数,函数图象关于原点对称,故排除B,D,当x=π时,y=f(π)=πcosπ+sinπ=﹣π<0,故排除B,将目标函数变形为﹣x+=y,故选:A.则z表示直线在y轴上截距,截距越大,z越大,5.某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是( )当目标函数过点A(2,1)时,截距最小为z=2+2=4,随着目标函数向上移动截距越来越大,故目标函数z=2x+y的取值范围是[4,+∞).故选:B.故m,n,l在同一平面”是“m,n,l两两相交”的必要不充分条件,故选:B.7.已知等差数列{an}的前n项和Sn,公差d≠0,≤1.记b1=S2,bn+1=Sn+2﹣S2n,n∈N*,下列等式不可能成立的是( )22A.2a4=a2+a6B.2b4=b2+b6C.a4=a2a8D.b4=b2b8【分析】由已知利用等差数列的通项公式判断A与C;由数列递推式分别求得b2,b4,b6,b8,分析B,D成立时是否满足公差d≠0,≤1判断B与D.解:在等差数列{an}中,an=a1+(n﹣1)d,A.B.C.3D.6,,【分析】画出几何体的直观图,利用三视图的数据求解几何体的体积即可.解:由题意可知几何体的直观图如图,下部是直三棱柱,底面是斜边长为2的等腰直角三角形,棱锥的高为b1=S2=2a1+d,bn+1=Sn+2﹣S2n=.2,上部是一个三棱锥,一个侧面与底面等腰直角三角形垂直,棱锥的高为1,∴b2=a1+2d,b4=﹣a1﹣5d,b6=﹣3a1﹣24d,b8=﹣5a1﹣55d.所以几何体的体积为:=.A.2a4=2(a1+3d)=2a1+6d,a2+a6=a1+d+a1+5d=2a1+6d,故A正确;B.2b4=﹣2a1﹣10d,b2+b6=a1+2d﹣3a1﹣24d=﹣2a1﹣22d,故选:A.若2b4=b2+b6,则﹣2a1﹣10d=﹣2a1﹣22d,即d=0,不合题意,故B错误;2C.若a4=a2a8,则,即,得,∵d≠0,∴a1=d,符合≤1,故C正确;D.若,则,6.已知空间中不过同一点的三条直线m,n,l,则“m,n,l在同一平面”是“m,n,l两两相交”的( )即,则有两不等负根,满足≤1,故D正确.A.充分不必要条件B.必要不充分条件∴等式不可能成立的是B.C.充分必要条件D.既不充分也不必要条件故选:B.【分析】由m,n,l在同一平面,则m,n,l相交或m,n,l有两个平行,另一直线与之相交,或三条直线8.已知点O(0,0),A(﹣2,0),B(2,0).设点P满足|PA|﹣|PB|=2,且P为函数y=3图象上两两平行,根据充分条件,必要条件的定义即可判断.的点,则|OP|=( )解:空间中不过同一点的三条直线m,n,l,若m,n,l在同一平面,则m,n,l相交或m,n,l有两个平行,另一直线与之相交,或三条直线两两平行.A.B.C.D.【分析】求出P满足的轨迹方程,求出P的坐标,即可求解|OP|.B.若S有4个元素,则S∪T有6个元素解:点O(0,0),A(﹣2,0),B(2,0).设点P满足|PA|﹣|PB|=2,C.若S有3个元素,则S∪T有4个元素D.若S有3个元素,则S∪T有5个元素可知P的轨迹是双曲线的右支上的点,【分析】利用特殊集合排除选项,推出结果即可.解:取:S={1,2,4},则T={2,4,8},S∪T={1,2,4,8},4个元素,排除C.P为函数y=3图象上的点,即在第一象限的点,S={2,4,8},则T={8,16,32},S∪T={2,4,8,16,32},5个元素,排除D;联立两个方程,解得P(,),S={2,4,8,16}则T={8,16,32,64,128},S∪T={2,4,8,16,32,64,128},7个元素,排除B;故选:A.所以|OP|==.二、填空题:本大题共7小题,共36分。多空题每小题4分;单空题每小题4分。故选:D.11.已知数列{an}满足an=,则S3= 10 .9.已知a,b∈R且ab≠0,若(x﹣a)(x﹣b)(x﹣2a﹣b)≥0在x≥0上恒成立,则( )【分析】求出数列的前3项,然后求解即可.A.a<0B.a>0C.b<0D.b>0【分析】设f(x)=(x﹣a)(x﹣b)(x﹣2a﹣b),求得f(x)的零点,根据f(0)≥0恒成立,讨论a,解:数列{an}满足an=,b的符号,结合三次函数的图象,即可得到结论.可得a1=1,a2=3,a3=6,解:设f(x)=(x﹣a)(x﹣b)(x﹣2a﹣b),可得f(x)的图象与x轴有三个交点,所以S3=1+3+6=10.即f(x)有三个零点a,b,2a+b且f(0)=﹣ab(2a+b),故答案为:10.由题意知,f(0)≥0恒成立,则ab(2a+b)≤0,a<0,b<0,可得2a+b<0,ab(2a+b)≤0恒成立,排除B,D;我们考虑零点重合的情况,即中间和右边的零点重合,左边的零点在负半轴上.则有a=b或a=2a+b或b=b+2a三种情况,此时a=b<0显然成立;若b=b+2a,则a=0不成立;13.已知tanθ=2,则cos2θ= ;tan(θ﹣)= .若a=2a+b,即a+b=0,可得b<0,a>0且a和2a+b都在正半轴上,符合题意,【分析】利用二倍角公式以及同角三角函数基本关系式求解第一问,利用两角和与差的三角函数转化求解第综上b<0恒成立.二问.故选:C.解:tanθ=2,10.设集合S,T,S⊆N*,T⊆N*,S,T中至少有两个元素,且S,T满足:①对于任意x,y∈S,若x≠y,都有xy∈T;则cos2θ====﹣.②对于任意x,y∈T,若x<y,则∈S;下列命题正确的是( )A.若S有4个元素,则S∪T有7个元素故有d1==1,d2==1,tan(θ﹣)===.则有=,故可得b2=(4k+b)2,整理得k(2k+b)=0,故答案为:﹣;.14.已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为 1 .因为k>0,所以2k+b=0,即b=﹣2k,【分析】利用圆锥的侧面积,求出母线长,求解底面圆的周长,然后求解底面半径.代入d1==1,解得k=,则b=﹣,解:∵圆锥侧面展开图是半圆,面积为2π,故答

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐