2020年山东省日照市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求的的选项选出来.1.2020的相反数是()A.−12020 B.12020 C.−2020 D.20202.单项式−3ab的系数是()A.3 B.−3 C.3a D.−3a3.“扶贫”是新时期党和国家的重点工作之一,为落实习近平总书记提出的“精准扶贫”战略构想,某省预计三年内脱贫1020000人,数字1020000用科学记数法可表示为()A.1.02×106 B.1.02×105 C.10.2×105 D.102×104 4.下列调查中,适宜采用全面调查的是()A.调查全国初中学生视力情况B.了解某班同学“三级跳远”的成绩情况C.调查某品牌汽车的抗撞击情况D.调查2019年央视“主持人大赛”节目的收视率5.将函数y=2x的图象向上平移3个单位,则平移后的函数解析式是()A.y=2x+3 B.y=2x−3 C.y=2(x+3) D.y=2(x−3)6.下列各式中,运算正确的是()A.x3+x3=x6 B.x2⋅x3=x5 C.(x+3)2=x2+9 D.5−3=27.已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.83 B.8 C.43 D.238.不等式组x+1≥23(x−5)<−9 的解集在数轴上表示为()A. B. C. D.9.如图,几何体由5个相同的小正方体构成,该几何体三视图中为轴对称图形的是()A.主视图 B.左视图C.俯视图 D.主视图和俯视图10.如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=63,AE=9,则阴影部分的面积为()A.6π−923 B.12π−93 C.3π−943 D.9311.用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放,则第10个图案中共有圆点的个数是()A.59 B.65 C.70 D.7112.如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=−1,下列结论:①abc<0;②3a<−c;③若m为任意实数,则有a−bm≤am2+b; ④若图象经过点(−3, −2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1−x2=5.其中正确的结论的个数是()A.4个 B.3个 C.2个 D.1个二、填空题:本大题共4小题,每小题4分,共16分.不需写解答过程,只要求填写最后结果.13.分解因式:mn+4n=________.14.如图,有一个含有30∘角的直角三角板,一顶点放在直尺的一条边上,若∠2=65∘,则∠1的度数是________.15.《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x人,则可列方程组为________.16.如图,在平面直角坐标系中,▱ABCD的顶点B位于y轴的正半轴上,顶点C,D位于x轴的负半轴上,双曲线y=kx(k<0, x<0)与▱ABCD的边AB,AD交于点E、F,点A的纵坐标为10,F(−12, 5),把△BOC沿着BC所在直线翻折,使原点O落在点G处,连接EG,若EG // y轴,则△BOC的面积是________.三、解答题:本大题共6小题,共68分.解答要写出必要的文字说明、证明过程或演算步骤.17.(1)计算:3−8+(23)−1−3×cos30∘;(2)解方程:x−3x−2+1=32−x.18.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.19.为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是________;众数是________;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是________;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明. 20.如图,Rt△ABC中,∠C=90∘,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≅△BDF;(2)P,N分别为AC,BE上的动点,连接AN,PN,若DF=5,AC=9,求AN+PN的最小值.21.阅读理解:如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90∘,其外接圆半径为R.根据锐角三角函数的定义:sinA=ac,sinB=bc,可得asinA=bsinB=c=2R,即:asinA=bsinB=csinC=2R,(规定sin90∘=1).探究活动:如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么:asinA________csinC(用>、=或<连接),并说明理由.事实上,以上结论适用于任意三角形.初步应用:在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60∘,∠B=45∘,a=8,求b.综合应用:如图3,在某次数学活动中,小凤同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15∘,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45∘,求古塔CD的高度(结果保留小数点后一位).(3≈1.732, sin15∘=6−24)22.如图,函数y=−x2+bx+c的图象经过点A(m, 0),B(0, n)两点,m,n分别是方程x2−2x−3=0的两个实数根,且m
2020年山东省日照市中考数学试卷(解析版)
剩余4页未读,继续阅读
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片