2012年山东省聊城市中考数学试卷一、选择题(本题共12小题,每题3分,共36分)1.(3分)计算|﹣|﹣的结果是( )A.﹣ B. C.﹣1 D.12.(3分)下列计算正确的是( )A.x2+x3=x5 B.x2•x3=x6 C.(x2)3=x5 D.x5÷x3=x23.(3分)“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A.必然事件 B.随机事件 C.确定事件 D.不可能事件4.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( )A. B. C. D.5.(3分)函数y=中自变量x的取值范围是( )A.x>2 B.x<2 C.x≠2 D.x≥26.(3分)将一副三角板按如图所示摆放,图中∠α的度数是( )A.75° B.90° C.105° D.120°7.(3分)某排球队12名队员的年龄如下表所示:年龄/岁1819202122人数/人14322该队队员年龄的众数与中位数分别是( )A.19岁,19岁 B.19岁,20岁 C.20岁,20岁 D.20岁,22岁8.(3分)如图,四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是( )A.DF=BE B.AF=CE C.CF=AE D.CF∥AE9.(3分)如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是( )A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格 B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格 C.把△ABC向下平移4格,再绕点C逆时针方向旋转180° D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°10.(3分)在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )A.1+ B.2+ C.2﹣1 D.2+111.(3分)如图,在△ABC中,点D、E分别是AB、AC的中点,则下列结论不正确的是( )A.BC=2DE B.△ADE∽△ABC C.= D.S△ABC=3S△ADE12.(3分)如图,在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,同心圆与直线y=x和y=﹣x分别交于A1,A2,A3,A4…,则点A30的坐标是( )A.(30,30) B.(﹣8,8) C.(﹣4,4) D.(4,﹣4)二、填空题(本题共5个小题,每小题3分,共15分)13.(3分)一元二次方程x2﹣2x=0的解是 .14.(3分)在半径为6cm的圆中,60°的圆心角所对的弧长等于 cm(结果保留π).15.(3分)计算:= .16.(3分)我市初中毕业男生体育测试项目有四项,其中“立定跳远”“1000米跑”“肺活量测试”为必测项目,另一项“引体向上”或“推铅球”中选一项测试.小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的概率是 .17.(3分)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 .三、解答题(本题共8小题,除第24题10分,25题12分,其余每小题7分)18.(7分)解不等式组.19.(8分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.20.(8分)为进一步加强中小学生近视眼的防控工作,市教育局近期下发了有关文件,将学生视力保护工作纳入学校和教师的考核内容,为此,某县教育组管部门对今年初中毕业生的视力进行了一次抽样调查,并根据调查结果绘制如下频数分布表和频数分布直方图的一部分.视力频数(人)频率4.0~4.2150.054.3~4.5450.154.6~4.81050.354.9~5.1a0.255.2~5.460b请根据图表信息回答下列问题:(1)求表中a、b的值,并将频数分布直方图补充完整;(2)若视力在4.9以上(含4.9)均属正常,估计该县5600名初中毕业生视力正常的学生有多少人?21.(8分)儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价3倍少6元,那么书包和文具盒的标价各是多少元?22.(8分)周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)23.(8分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.24.(10分)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC的平行线交AB的延长线于点D.(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;(2)当DP为⊙O的切线时,求线段DP的长.25.(12分)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?2012年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每题3分,共36分)1.【分析】根据绝对值的性质去掉绝对值符号,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:|﹣|﹣=﹣=﹣.故选:A.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.2.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减,分别进行计算,即可选出答案.【解答】解:A、x2与x3不是同类项,不能合并,故此选项错误;B、x2•x3=x2+3=x5,故此选项错误;C、(x2)3=x6,故此选项错误;D、x5÷x3=x2,故此选项正确;故选:D.【点评】此题主要考查了同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,很容易混淆,一定要记准法则才能做题.3.【分析】根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断.【解答】解:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选:B.【点评】本题主要考查的是对随机事件概念的理解,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,比较简单.4.【分析】根据主视图的定义,找到从正面看所得到的图形即可.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.5.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2>0,解得x>2.故选:A.【点评】本题考查函数自变量的取值范围,知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.【分析】先根据直角三角形的性质得出∠BAE及∠D的度数,再由三角形外角的性质即可得出结论.【解答】解:∵图中是一副直角三角板,∴∠BAE=45°,∠D=60°,∠DAE=90°,∴∠DAF=90°﹣∠BAE=90°﹣45°=45°,∴∠α=∠DAF+∠D=45°+60°=105°.故选:C.【点评】本题考查的是三角形内角和定理,即三角形内角和是180°.7.【分析】根据中位数和众数的定义求解.【解答】解:观察图表可知:人数最多的是4人,年龄是19岁,故众数是19.共12人,中位数是第6,7个人平均年龄,因而中位数是20.故选:B.【点评】本题考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.8.【分析】根据平行四边形的性质和全等三角形的判定方法逐项分析即可.【解答】解:A、当DF=BE时,有平行四边形的性质可得:AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;B、当AF=CE时,有平行四边形的性质可得:BE=DF,AB=CD,∠B=∠D,利用SAS可判定△CDF≌△ABE;C、当CF=AE时,有平行四边形的性质可得:AB=CD,∠B=∠D,利用SSA不能判定△CDF≌△ABE;D、当CF∥AE时,有平行四边形的性质可得:AB=CD,∠B=∠D,∠AEB=∠CFD,利用AAS可判定△CDF≌△ABE.故选:C.【点评】本题考查了平行四边形的性质和重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.9.【分析】观察图象可知,先把△ABC绕点C顺时针方向旋转90°,再向下平移5格即可得到.【解答】解:根据图象,△ABC绕点C顺时针方向旋转90°,再向下平移5格即可与△DEF重合.故选:B.【点评】本题考查了几何变换的类型,几何变换只改变图形的位置,不改变图形的形状与大小,本题用到了旋转变换与平移变换,对识图能力要求比较高.10.【分析】设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.【解答】解:设点C所对应的实数是x.则有x﹣=﹣(﹣1),解得x=2+1.故选:D.【点评】本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.11.【分析】根据三角形的中位线定理得出DE是△ABC的中位线,再由中位线的性质得出△ADE∽△ABC,进而可得出结论.【解答】解:∵在△ABC中,点D、E分别是边AB、AC的中点,∴DE∥BC,DE=BC,∴BC=2DE,故A正确;∵DE∥BC,∴△ADE∽△ABC,故B正确;∴=,故C正确;∵DE是△ABC的中位线,∴AD:BC=1:2,∴S△ABC=4S△ADE故D错误.故选:D.【点评】本题考查的是相似三角形的判定与性质及三角形的中位线定理,熟记以上知识是解答此题的关键.12.【分析】根据30÷4=7…2,得出A30在直线y=﹣x上,在第二象限,且在第8个圆上,求出OA30=8,通过解直角三角形即可求出答案.【解答】解:∵30÷4=7…2,∴A30在直线y=﹣x上,且在第二象限,即射线OA30与x轴的夹角是45°,如图OA=8,∠AOB=45°,∵在直角坐标系中,以原点O为圆心的同心圆的半径由内向外依次为1,2,3,4,…,∴OA30=8,∵sin45°=,cos45°=,∴AB=4,OB=4,∵A30在第二象限∴A30的横坐标是﹣8sin45°=﹣4,纵坐标是4,即A30的坐标是(﹣4,4).故选:C.【点评】本题考查了解直角三角形,一次函数等知识点的应用,解此题的关键是确定出A30的位置(如在直线y=﹣x上、在第二象限
2012年山东省聊城市中考数学试卷
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片