2013年山东省聊城市中考数学试卷

2023-10-31 · U1 上传 · 19页 · 281 K

2013年山东省聊城市中考数学试卷一.选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(﹣2)3的相反数是( )A.﹣6 B.8 C. D.2.(3分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣63.(3分)如图是由几个相同的小立方块组成的三视图,小立方块的个数是( )A.3个 B.4个 C.5个 D.6个4.(3分)不等式组的解集在数轴上表示为( )A. B. C. D.5.(3分)下列命题中的真命题是( )A.三个角相等的四边形是矩形 B.对角线互相垂直且相等的四边形是正方形 C.顺次连接矩形四边中点得到的四边形是菱形 D.正五边形既是轴对称图形又是中心对称图形6.(3分)下列事件:①在足球赛中,弱队战胜强队.②抛掷1枚硬币,硬币落地时正面朝上.③任取两个正整数,其和大于1④长为3cm,5cm,9cm的三条线段能围成一个三角形.其中确定事件有( )A.1个 B.2个 C.3个 D.4个7.(3分)把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长( )A.102cm B.104cm C.106cm D.108cm8.(3分)二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是( )A. B. C. D.9.(3分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为( )A.12米 B.4米 C.5米 D.6米10.(3分)某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有( )A.50人 B.64人 C.90人 D.96人11.(3分)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为( )A.a B. C. D.a12.(3分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )A.2 B.4 C.8 D.16二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果)13.(3分)若x1=﹣1是关于x的方程x2+mx﹣5=0的一个根,则方程的另一个根x2= .14.(3分)已知一个扇形的半径为60cm,圆心角为150°,用它围成一个圆锥的侧面,那么圆锥的底面半径为 cm.15.(3分)某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A、B、C三个队和县区学校的D,E,F,G,H五个队,如果从A,B,D,E四个队与C,F,G,H四个队中个抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是 .16.(3分)如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为 .17.(3分)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为 (用n表示).三、解答题(本题共八个小题,共69分,解答题应写出文字说明,证明过程或推演步骤)18.(7分)计算:.19.(8分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.20.(8分)小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,如图是他们投标成绩的统计图.(1)根据图中信息填写下表平均数中位数众数小亮 7 小莹7 9(2)分别用平均数和中位数解释谁的成绩比较好.21.(8分)夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?22.(8分)如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C点观测F点的俯角为53°,老鼠躲藏处M(点M在DE上)距D点3米.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?23.(8分)如图,一次函数的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=的图象在第二象限交于点C,如果点A为的坐标为(2,0),B是AC的中点.(1)求点C的坐标;(2)求一次函数的解析式.24.(10分)如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.25.(12分)已知△ABC中,边BC的长与BC边上的高的和为20.(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;(2)当BC多长时,△ABC的面积最大?最大面积是多少?(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明. 2013年山东省聊城市中考数学试卷参考答案与试题解析一.选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.【分析】先根据有理数乘方的定义求出(﹣2)3,再根据只有符号不同的两数叫做互为相反数解答.【解答】解:∵(﹣2)3=﹣8,∴(﹣2)3的相反数是8.故选:B.【点评】此题考查了有理数的乘方,以及相反数,弄清题意是解本题的关键.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6;故选:D.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】根据三视图的知识,可判断该几何体有两列两行,底面有3个正方形,第二层有1个.【解答】解:综合三视图可看出,底面有3个小立方体,第二层应该有1个小立方体,因此小立方体的个数应该是3+1=4个.故选:B.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.4.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为:1<x≤2,在数轴上表示不等式组的解集为:,故选:A.【点评】本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.5.【分析】根据矩形、菱形、正方形的判定以及正五边形的性质得出答案即可.【解答】解:A、根据四个角相等的四边形是矩形,故此命题是假命题,故此选项错误;B、根据对角线互相垂直、互相平分且相等的四边形是正方形,故此命题是假命题,故此选项错误;C、顺次连接矩形四边中点得到的四边形是菱形,故此命题是真命题,故此选项正确;D、正五边形是轴对称图形不是中心对称图形,故此命题是假命题,故此选项错误.故选:C.【点评】此题主要考查了矩形、菱形、正方形的判定以及正五边形的性质等知识,熟练掌握相关定理是解题关键.6.【分析】根据随机事件的定义对各选项进行逐一分析即可.【解答】解:①在足球赛中,弱队战胜强队是随机事件,不是确定事件,故①错误;②抛掷1枚硬币,硬币落地时正面朝上是随机事件,不是确定事件,故②错误;③任取两个正整数,其和大于1是必然事件,是确定事件,故③正确;④长为3cm,5cm,9cm的三条线段能围成一个三角形是不可能事件,是确定事件,故④正确.综上可得只有③④正确,共2个.故选:B.【点评】本题考查的是随机事件,即在一定条件下,可能发生也可能不发生的事件,称为随机事件.7.【分析】根据圆的周长公式分别求出半径变化前后的钢丝长度,进而得出答案.【解答】解:设地球半径为:rcm,则地球的周长为:2πrcm,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,故此时钢丝围成的圆形的周长变为:2π(r+16)cm,∴钢丝大约需要加长:2π(r+16)﹣2πr≈100(cm)=102(cm).故选:A.【点评】此题主要考查了圆的周长公式应用以及科学记数法等知识,根据已知得出图形变化前后的周长是解题关键.8.【分析】根据二次函数图象的开口方向向下确定出a<0,再根据对称轴确定出b>0,然后根据一次函数图象解答即可.【解答】解:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线x=﹣>0,∴b>0,∴一次函数y=ax+b的图象经过第二四象限,且与y轴的正半轴相交,C选项图象符合.故选:C.【点评】本题考查了二次函数的图象,一次函数的图象,根据图形确定出a、b的正负情况是解题的关键.9.【分析】根据迎水坡AB的坡比为1:,可得=1:,即可求得AC的长度,然后根据勾股定理求得AB的长度.【解答】解:Rt△ABC中,BC=6米,=1:,∴AC=BC×=6,∴AB===12.故选:A.【点评】此题主要考查解直角三角形的应用,构造直角三角形解直角三角形并且熟练运用勾股定理是解答本题的关键.10.【分析】随机抽取的50名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校七年级学生在这次数学测试中达到优秀的人数.【解答】解:随机抽取了50名学生的成绩进行统计,共有15名学生成绩达到优秀,∴样本优秀率为:15÷50=30%,又∵某校七年级共320名学生参加数学测试,∴该校七年级学生在这次数学测试中达到优秀的人数为:320×30%=96人.故选:D.【点评】本题考查了用样本估计总体,这是统计的基本思想.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.11.【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为a,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为a,∴△ACD的面积为a,故选:C.【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.12.【分析】根据抛物线解析式计算出y=的顶点坐标,过点C作CA⊥y轴于点A,根据抛物线的对称性可知阴影部分的面积等于矩形ACBO的面积,然后求解即可.【解答】解:过点C作CA⊥y,∵抛物线y==(x2﹣4x)=(x2﹣4x+4)﹣2=(x﹣2)2﹣2,∴顶点坐标为C(2,﹣2),对称轴与两段抛物线所围成的阴影部分的面积为:2×2=4,故选:B.【点评】本题考查了二次函数的问题,根据二次函数的性质求出平移后的抛物线的对称轴的解析式,并对阴影部分的面积进行转换是解题的关键.二、填空题(本题共5个小题,每

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐