2016年深圳市中考数学试题及答案

2023-10-31 · U1 上传 · 11页 · 578.8 K

2016年广东省深圳市中考数学试卷第一部分选择题(本部分共12小题,每小题3分,共36分。每小题给出4个选项,其中只有一个选项是正确的)1.下列四个数中,最小的正数是()A.—1B.0C.1D.22.把下列图形折成一个正方体的盒子,折好后与“中”相对的字是()A.祝B.你C.顺D.利3.下列运算正确的是()A.8a-a=8B.(-a)4=a4C.a3×a2=a6D.(a-b)2=a2-b24.下列图形中,是轴对称图形的是()5.据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学计数法表示为()A.0.157×1010B.1.57×108C.1.57×109D.15.7×1086.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60°B.∠3=60°C.∠4=120°D.∠5=40°7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。则第3小组被抽到的概率是()A.B.C.D.8.下列命题正确是()一组对边平行,另一组对边相等的四边形是平行四边形两边及一角对应相等的两个三角形全等16的平方根是4一组数据2,0,1,6,6的中位数和众数分别是2和69.施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。设原计划每天施工x米,则根据题意所列方程正确的是()B.C.D.10.给出一种运算:对于函数,规定。例如:若函数,则有。已知函数,则方程的解是()A.B. C.D.11.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为时,则阴影部分的面积为()A.B.C.D.12.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②;③∠ABC=∠ABF;④,其中正确的结论个数是()A.1B.2C.3D.4第二部分非选择题填空题(本题共4小题,每小题3分,共12分)分解因式:已知一组数据的平均数是5,则数据的平均数是_____________.如图,在ABCD中,以点为圆心,以任意长为半径作弧,分别交于点,再分别以为圆心,以大于的长为半径作弧,两弧在内交于点M,连接BM并延长交AD于点E,则DE的长为____________.16.如图,四边形是平行四边形,点C在x轴的负半轴上,将ABCO绕点A逆时针旋转得到平行四边形ADEF,AD经过点O,点F恰好落在x轴的正半轴上.若点D在反比例函数的图像上,则k的值为_________.解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)(5分)计算:18.(6分)解不等式组19.(7分)深圳市政府计划投资1.4万亿元实施东进战略,为了解深圳市民对东进战略的关注情况.某学校数学兴趣小组随机采访部分深圳市民.对采访情况制作了统计图表的一部分如下:(1)根据上述统计表可得此次采访的人数为人,m=n=;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计15000名深圳市民中,高度关注东进战略的深圳市民约有人;20.(8分)某兴趣小组借助无人飞机航拍校园,如图,无人飞机从A初飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°.B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)21.(8分)荔枝是深圳特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的两倍,请设计一种购买方案,使所需总费用最低.22.(9分)如图,已知⊙O的半径为2,AB为直径,CD为弦,AB与CD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,链接PC。求CD的长;求证:PC是⊙O的切线;点G为弧ADB的中点,在PC延长线上有一动点Q,连接QG交AB于点E,交弧BC于点F(F与B、C不重合)。问GE▪GF是否为定值?如果是,求出该定值;如果不是,请说明理由。23.(9分)如图,抛物线与轴交于A、B两点,且B(1,0)。求抛物线的解析式和点A的坐标;(2)如图1,点P是直线上的动点,当直线平分∠APB时,求点P的坐标;(3)如图2,已知直线分别与轴轴交于C、F两点。点Q是直线CF下方的抛物线上的一个动点,过点Q作轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE。问以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由。2016年广东省深圳市中考数学试卷参考答案一、选择题123456789101112CCBBCDADABAD压轴题解析:11∵C为的中点,CD=∵CA=CB,∠C=∠CBF=90°∴∠ABC=∠ABF=45°,故正确∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°∴△ACD∽△FEQ∴AC∶AD=FE∶FQ∴AD·FE=AD²=FQ·AC,故④正确填空题13141516压轴题解析:如图,作DM⊥轴由题意∠BAO=∠OAF,AO=AF,AB∥OC所以∠BAO=∠AOF=∠AFO=∠OAF∴∠AOF=60°=∠DOM∵OD=AD-OA=AB-OA=6-2=4∴MO=2,MD=∴D(-2,-)∴k=-2×()=三、解答题17.解:原式=2-1+6-1=618.解:5x-1<3x+3,解得x<24x-2-6≤15x+3,解得x≥-1∴-1≤x<219.(1)200;20;0.15;(2)如下图所示;(3)1500东进战略关注情况条形统计图20.解:如图,作AD⊥BC,BH⊥水平线由题意∠ACH=75°,∠BCH=30°,AB∥CH∴∠ABC=30°,∠ACB=45°∵AB=4×8=32m∴AD=CD=AB·sinQUOTE30°=16mBD=AB·cos30°QUOTE=16EQ\R(,3)m∴BC=CD+BD=16+16EQ\R(,3)m∴BH=BC·sinQUOTE30°=8+8EQ\R(,3)m21.解:(1)设桂味售价为每千克x元,糯米味售价为每千克y元,则:2x+3y=90x+2y=55解得:x=15y=20答:桂味售价为每千克15元,糯米味售价为每千克20元。(2)设购买桂味t千克,总费用为w元,则购买糯米味12-t千克,∴12-t≥2t∴t≤4W=15t+20(12-t)=-5t+240.∵k=-5<0∴w随t的增大而减小∴当t=4时,wmin=220.答:购买桂味4千克,糯米味8千克是,总费用最少。22.(1)如答图1,连接OC∵沿CD翻折后,A与O重合∴OM=OA=1,CD⊥OA∵OC=2∴CD=2CM=2=2∵PA=OA=2,AM=OM=1,CM=又∵CMP=∠OMC=90°∴PC==2∵OC=2,PO=4∴PC+OC=PO∴∠PCO=90°∴PC与☉O相切GE·GF为定值,证明如下:如答图2,连接GA、AF、GB∵G为中点∴∴∠BAG=∠AFG∵∠AGE=∠FGA∴△AGE∽△FGA∴∴GE·GF=AG∵AB为直径,AB=4∴∠BAG=∠ABG=45°∴AG=2∴GE·GF=AG=8[注]第(2)题也可以利用相似倒角证∠PCO=90°第(3)题也可以证△GBE∽△GFB解:(1)把B(1,0)代入y=ax+2x-3得a+2-3=0,解得a=1∴y=x+2x-3,A(-3,0)(2)若y=x平分∠APB,则∠APO=∠BPO如答图1,若P点在x轴上方,PA与y轴交于点∵∠POB=∠PO=45°,∠APO=∠BPO,PO=PO∴△≌△OPB∴=1,∴PA:y=3x+1∴若P点在x轴下方时,综上所述,点P的坐标为(3)如图2,做QHCF,CF:y=-,C,Ftan∠OFC=DQ∥y轴∠QDH=∠MFD=∠OFCtan∠HDQ=不妨记DQ=1,则DH=,HQ=QDE是以DQ为腰的等腰三角形若DQ=DE,则若DQ=QE,则<当DQ=QE时则△DEQ的面积比DQ=DE时大设Q当DQ=t=以QD为腰的等腰

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐