2022年浙江省初中毕业生学业考试(台州卷)数学试题卷亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共4页,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效.3.答题前,请认真阅读答题纸上的“注意事项”,按规定答题.4.本次考试不得使用计算器.一、选择题(本题有10小题,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.计算的结果是()A.6 B. C.5 D.【答案】A【解析】【分析】根据有理数乘法法则计算即可.【详解】解:.故选:A.【点睛】本题考查了有理数乘法:两个数相乘,同号得正,异号得负,再将两个数字的绝对值相乘.2.如图是由四个相同的正方体搭成的立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】找到几何体的正面看所得到的图形即可.【详解】解:从几何体的正面看可得如下图形,故选:A.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图是从正面所看到的图形.3.估计的值应在()A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之【答案】B【解析】【分析】由于4<6<9,于是,从而有.【详解】解:∵4<6<9,∴,∴,故选B.【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.如图,已知,为保证两条铁轨平行,添加的下列条件中,正确的是()A. B. C. D.【答案】C【解析】【分析】根据平行线的判定方法进行判断即可.【详解】解:A.∠1与∠2邻补角,无法判断两条铁轨平行,故此选项不符合题意;B.∠1与∠3与两条铁轨平行没有关系,故此选项不符合题意;C.∠1与∠4是同位角,且∠1=∠4=90°,故两条铁轨平行,所以该选项正确;D.∠1与∠5与两条铁轨平行没有关系,故此选项不符合题意;故选:C.【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定是解答本题的关键.5.下列运算正确的是()A. B. C. D.【答案】A【解析】【分析】根据同底数幂的乘除法法则以及积的乘方法则,幂的乘方法则,逐一判断选项即可.【详解】解:A.,正确,该选项符合题意;B.,原计算错误,该选项不符合题意;C.,原计算错误,该选项不符合题意;D.,原计算错误,该选项不符合题意;故选:A.【点睛】本题主要考查同底数幂的乘除法以及积的乘方、幂的乘方,熟练掌握上述运算法则是解题的关键.6.如图是战机在空中展示的轴对称队形.以飞机B,C所在直线为x轴、队形的对称轴为y轴,建立平面直角坐标系.若飞机E的坐标为(40,a),则飞机D的坐标为()A. B. C. D.【答案】B【解析】【分析】直接利用关于y轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E与点D关于y轴对称,∵飞机E的坐标为(40,a),∴飞机D的坐标为(-40,a),故选:B.【点睛】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.7.从,两个品种的西瓜中随机各取7个,它们的质量分布折线图如图.下列统计量中,最能反映出这两组数据之间差异的是()A.平均数 B.中位数 C.众数 D.方差【答案】D【解析】【分析】根据平均数、中位数、众数、方差的定义进行分析求解即可.【详解】计算A、B西瓜质量的平均数:,,差距较小,无法反映两组数据的差异,故A错误;可知A、B两种西瓜质量的中位数都为5.0,故B错误;可知A、B两种西瓜质量的众数都为5.0,C错误;由折线图可知A种西瓜折线比较平缓,故方差较小,而B种西瓜质量折线比较陡,故方差较大,则方差最能反映出两组数据的差异,D正确,故选:D.【点睛】本题考查了平均数、中位数、众数、方差的定义,难度较小,熟练掌握其定义与计算方法是解题的关键.8.吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校,设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A. B. C. D.【答案】C【解析】【分析】根据吴老师离公园的距离以及所用时间可判断.【详解】解:吴老师家出发匀速步行8min到公园,表示从(0,400)运动到(8,0);在公园,停留4min,然后匀速步行6min到学校,表示从(12,0)运动到(18,600);故选:C.【点睛】本题考查函数的图象,解题的关键是正确理解函数图象表示的意义,明白各个过程对应的函数图象.9.如图,点在的边上,点在射线上(不与点,重合),连接,.下列命题中,假命题是()A.若,,则 B.若,,则C.若,,则 D.若,,则【答案】D【解析】【分析】根据等腰三角形三线合一的性质证明PD是否是BC的垂直平分线,判断即可.【详解】因为AB=AC,且AD⊥BC,得AP是BC的垂直平分线,所以PB=PC,则A是真命题;因为PB=PC,且AD⊥BC,得AP是BC的垂直平分线,所以AB=AC,则B是真命题;因为AB=AC,且∠1=∠2,得AP是BC的垂直平分线,所以PB=PC,则C是真命题;因为PB=PC,△BCP是等腰三角形,∠1=∠2,不能判断AP是BC的垂直平分线,所以AB和AC不一定相等,则D是假命题.故选:D.【点睛】本题主要考查了等腰三角形的性质和判定,掌握性质定理是解题的关键.10.一个垃圾填埋场,它在地面上的形状为长,宽的矩形,有污水从该矩形的四周边界向外渗透了,则该垃圾填埋场外围受污染土地的面积为()A. B. C. D.【答案】B【解析】【分析】根据题意可知受污染土地由两类长分别为,,宽分别为的矩形,及四个能组成一个以半径为的圆组成,求出面积和即可.【详解】解:根据题意可知受污染土地由两类长分别为,,宽分别为的矩形,及四个能组成一个以半径为的圆组成,面积为:,故选:B.【点睛】本题考查了矩形的面积,圆的面积的求法,解题的关键是读懂题目,明确所求的面积的组成部分为哪些.二、填空题(本题有6小题)11.分解因式:=____.【答案】.【解析】【分析】利用平方差公式分解因式即可得到答案【详解】解:.故答案为:【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键.12.将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)掷一次,朝上一面点数是1的概率为________.【答案】【解析】【分析】使用简单事件概率求解公式即可:事件发生总数比总事件总数.【详解】掷骰子一次共可能出现6种情况,分别是向上点数是:1、2、3、4、5、6,点数1向上只有一种情况,则朝上一面点数是1的概率P=.故答案为:【点睛】本题考查了简单事件概率求解,熟练掌握简单事件概率求解的公式是解题的关键.13.如图,在中,,,,分别为,,的中点.若的长为10,则的长为________.【答案】10【解析】【分析】根据三角形中位线定理求出AB,根据直角三角形的性质解答.【详解】解:∵E、F分别为BC、AC的中点,∴AB=2EF=20,∵∠ACB=90°,点D为AB的中点,∴,故答案为:10.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.14.如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为______.【答案】8【解析】【分析】根据平移的性质即可求解.【详解】解:由平移的性质S△A′B′C′=S△ABC,BC=B′C′,BC∥B′C′,∴四边形B′C′CB为平行四边形,∵BB′⊥BC,∴四边形B′C′CB为矩形,∵阴影部分的面积=S△A′B′C′+S矩形B′C′CB-S△ABC=S矩形B′C′CB=4×2=8(cm2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的的值是____.先化简,再求值:,其中解:原式【答案】5【解析】【分析】根据题意得到方程,解方程即可求解.【详解】解:依题意得:,即,去分母得:3-x+2(x-4)=0,去括号得:3-x+2x-8=0,解得:x=5,经检验,x=5是方程的解,故答案为:5.【点睛】本题考查了解分式方程,一定要注意解分式方程必须检验.16.如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B重合时,EF的长为________;当点M的位置变化时,DF长的最大值为________.【答案】①.②.【解析】【分析】当点M与点B重合时,EF垂直平分AB,利用三角函数即可求得EF的长;【详解】解:当点M与点B重合时,由折叠的性质知EF垂直平分AB,∴AE=EB=AB=3,在Rt△AEF中,∠A=60°,AE=3,tan60°=,∴EF=3;当AF长取得最小值时,DF长取得最大值,由折叠的性质知EF垂直平分AM,则AF=FM,∴FM⊥BC时,FM长取得最小值,此时DF长取得最大值,过点D作DG⊥BC于点C,则四边形DGMF为矩形,∴FM=DG,在Rt△DGC中,∠C=∠A=60°,DC=AB=6,∴DG=DCsin60°=3,∴DF长的最大值为AD-AF=AD-FM=AD-DG=6-3,故答案为:3;6-3.【点睛】本题考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是灵活运用所学知识解决问题.三、解答题(本题有8小题)17.计算:.【答案】4【解析】【分析】先化简各数,然后再进行计算.【详解】解:原式.【点睛】本题考查了算术平方根、绝对值、有理数乘方,解题的关键是掌握相应的运算法则.18.解方程组:.【答案】【解析】【分析】用加减消元法解二元一次方程组即可;【详解】.解:,得.把代入①,得.∴原方程组的解为.【点睛】本题考查了二元一次方程组的解法,本题使用加减消元法比较简单,当然使用代入消元求解二元一次方程组亦可.19.如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【答案】梯子顶部离地竖直高度BC约为2.9m.【解析】【分析】根据竖直的墙与梯子形成直角三角形,利用锐角三角函数即可求出AC的长.【详解】解:在Rt△ABC中,AB=3,∠ACB=90°,∠BAC=75°,∴BC=AB⋅sin75°≈3×0.97=2.91≈2.9(m).答:梯子顶部离地竖直高度BC约为2.9m.【点睛】本题考查了解直角三角形的应用,解决本题的关键是掌握锐角三角函数.20.如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高(单位:)是物距(小孔到蜡烛的距离)(单位:)的反比例函数,当时,.(1)求关于的函数解析式;(2)若火焰的像高为,求小孔到蜡烛的距离.【答案】(1)(2)【解析】【分析】(1)运用待定系数法求解即可;(2)把代入反比例函数解析式,求出y的值即可.【小问1详解】由题意设,把,代入,得.∴关于的函数解析式为.【小问2详解】把代入,得.∴小孔到蜡烛的距离为.【点睛】本题主要考查了运用待定系数法求函数关系式以及求函数值,能正确掌握待定系数法是解答本题的关键.21.如图,在中,,以为直径的⊙与交于点,连接.(1)求证:;(2)若⊙与相切,求的度数;(3)用无刻度的直尺和圆规作出劣弧的中点.(不写作法,保留作图痕迹)【答案】(1)证明见详解(2)(3)作图见详解【解析】【分析】(1)根据直径所对的圆周角是直角、等腰三角形的三线合一即可证明;(2)根据切线的性质可
精品解析:2022年浙江省台州市中考数学真题(解析版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片