数学试题一、选择题(本大题共有8小题,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.-3的倒数是()A.3 B.-3 C. D.【答案】D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.2.下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【详解】解:.故选:B.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.4.在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是()A.38 B.42 C.43 D.45【答案】D【解析】【分析】根据众数的定义即可求解.【详解】解:∵45出现了3次,出现次数最多,∴众数为45.故选D.【点睛】本题考查了求众数,掌握众数的定义是解题的关键.众数:在一组数据中出现次数最多的数.5.函数中自变量的取值范围是()A. B. C. D.【答案】A【解析】【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵,∴.故选A.【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.6.的三边长分别为2,3,4,另有一个与它相似的三角形,其最长边为12,则的周长是()A.54 B.36 C.27 D.21【答案】C【解析】【分析】根据相似三角形的性质求解即可.【详解】解:∵△ABC与△DEF相似,△ABC的最长边为4,△DEF的最长边为12,∴两个相似三角形的相似比为1:3,∴△DEF的周长与△ABC的周长比为3:1,∴△DEF的周长为3×(2+3+4)=27,故选:C.【点睛】本题主要考查了相似三角形的性质,熟知相似三角形的周长之比等于相似之比是解题的关键.7.如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为()A. B. C. D.【答案】B【解析】【分析】阴影部分的面积等于扇形面积减去三角形面积,分别求出扇形面积和等边三角形的面积即可.【详解】解:如图,过点OC作OD⊥AB于点D,∵∠AOB=2×=60°,∴△OAB是等边三角形,∴∠AOD=∠BOD=30°,OA=OB=AB=2,AD=BD=AB=1,∴OD=,∴阴影部分的面积为,故选:B.【点睛】本题考查了扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法是正确解答的关键.8.如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE=DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是()A.①②③ B.①③④ C.①④⑤ D.②③④【答案】B【解析】【分析】由折叠的性质知∠FGE=90°,∠GEC=90°,点G为AD的中点,点E为AB的中点,设AD=BC=2a,AB=CD=2b,在Rt△CDG中,由勾股定理求得b=,然后利用勾股定理再求得DF=FO=,据此求解即可.【详解】解:根据折叠的性质知∠DGF=∠OGF,∠AGE=∠OGE,∴∠FGE=∠OGF+∠OGE=(∠DGO+∠AGO)=90°,同理∠GEC=90°,∴GF∥EC;故①正确;根据折叠的性质知DG=GO,GA=GO,∴DG=GO=GA,即点G为AD的中点,同理可得点E为AB的中点,设AD=BC=2a,AB=CD=2b,则DG=GO=GA=a,OC=BC=2a,AE=BE=OE=b,∴GC=3a,在Rt△CDG中,CG2=DG2+CD2,即(3a)2=a2+(2b)2,∴b=,∴AB=2=AD,故②不正确;设DF=FO=x,则FC=2b-x,在Rt△COF中,CF2=OF2+OC2,即(2b-x)2=x2+(2a)2,∴x==,即DF=FO=,GE=a,∴,∴GE=DF;故③正确;∴,∴OC=2OF;故④正确;∵∠FCO与∠GCE不一定相等,∴△COF∽△CEG不成立,故⑤不正确;综上,正确的有①③④,故选:B.【点睛】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.二、填空题(本大题共8小题,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:______.【答案】【解析】【分析】直接运用合并同类项法则进行计算即可得到答案.【详解】解:.故答案为:.【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.10.已知∠A的补角是60°,则_________.【答案】120【解析】【分析】如果两个角的和等于180°,就说这两个角互为补角.由此定义即可求解.【详解】解:∵∠A的补角是60°,∴∠A=180°-60°=120°,故答案为:120.【点睛】本题考查补角的定义,熟练掌握两个角互为补角的定义是解题的关键.11.写出一个在1到3之间的无理数:_________.【答案】(答案不唯一)【解析】【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.【详解】解:1和3之间的无理数如.故答案为:(答案不唯一).【点睛】本题主要考查常见无理数的定义和性质,解题关键是估算无理数的整数部分和小数部分.12.若关于的一元二次方程的一个解是,则的值是___.【答案】1【解析】【分析】根据一元二次方程解的定义把代入到进行求解即可.【详解】解:∵关于x的一元二次方程的一个解是,∴,∴,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.13.如图,是⊙的直径,是⊙的切线,为切点,连接,与⊙交于点,连接.若,则_________.【答案】49【解析】【分析】利用同弧所对的圆周角等于圆心角的一半求得∠B=∠AOD=41°,根据AC是⊙O的切线得到∠BAC=90°,即可求出答案.【详解】解:∵∠AOD=82°,∴∠B=∠AOD=41°,∵AC为圆的切线,A为切点,∴∠BAC=90°,∴∠C=90°-41°=49°故答案为49.【点睛】此题考查圆周角定理,圆的切线的性质定理,直角三角形两锐角互余,正确理解圆周角定理及切线的性质定理是解题的关键.14.如图,在正方形网格中,的顶点、、都在网格线上,且都是小正方形边的中点,则_________.【答案】【解析】【分析】如图所示,过点C作CE⊥AB于E,先求出CE,AE的长,从而利用勾股定理求出AC的长,由此求解即可.【详解】解:如图所示,过点C作CE⊥AB于E,由题意得,∴,∴,故答案为:.【点睛】本题主要考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.15.如图,一位篮球运动员投篮,球沿抛物线运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为,则他距篮筐中心的水平距离是_________.【答案】4【解析】【分析】将代入中可求出x,结合图形可知,即可求出OH.【详解】解:当时,,解得:或,结合图形可知:,故答案为:4【点睛】本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x的值.16.如图,在中,.利用尺规在、上分别截取、,使;分别以、为圆心,大于的长为半径作弧,两弧在内交于点;作射线交于点.若,则的长为_________.【答案】【解析】【分析】如图所示,过点H作HM⊥BC于M,由作图方法可知,BH平分∠ABC,即可证明∠CBH=∠CHB,得到,从而求出HM,CM的长,进而求出BM的长,即可利用勾股定理求出BH的长.【详解】解:如图所示,过点H作HM⊥BC于M,由作图方法可知,BH平分∠ABC,∴∠ABH=∠CBH,∵四边形ABCD是平行四边形,∴,∴∠CHB=∠ABH,∠C=180°-∠ABC=30°,∴∠CBH=∠CHB,∴,∴,∴,∴,∴,故答案为:.【点睛】本题主要考查了角平分线的尺规作图,平行四边形的性质,含30度角的直角三角形的性质,勾股定理,等腰三角形的性质与判定等等,正确求出CH的长是解题的关键.三、解答题(本大题共11小题,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:.【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.详解】解:原式.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.18.解不等式2x﹣1>,并把它的解集在数轴上表示出来.【答案】不等式的解集为x>1,在数轴上表示见解析.【解析】【详解】试题分析:根据不等式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.试题解析:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:19.化简:.【答案】【解析】【分析】根据异分母分式的加法计算法则求解即可.【详解】解:原式.【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键.20.为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A乒乓球,B排球,C篮球,D跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.问卷情况统计表:运动项目人数A乒乓球mB排球10C篮球80D跳绳70(1)本次调查的样本容量是_______,统计表中m=_________;(2)在扇形统计图中,“B排球”对应的圆心角的度数是_________;(3)若该校共有2000名学生,请你估计该校最喜欢“A乒乓球”的学生人数.【答案】(1)200,40(2)18(3)约为400人【解析】【分析】(1)从两个统计图中可知,“C篮球”的人数80人,占调查人数的40%,可求出本次调查的样本容量,进而求出m的值;(2)“B排球”的人数10人,据此可求得相应的圆心角;(3)用总人数乘以“A乒乓球”的学生所占的百分比即可.【小问1详解】解:本次调查的样本容量是:80÷40%=200(人),m=200-10-80-70=40;故答案为:200,40;【小问2详解】解:扇形统计图中B部分扇形所对应的圆心角是360°×=18°,故答案为:18;【小问3详解】解:(人),估计该校最喜欢“A乒乓球”的学生人数约为400人.【点睛】此题考查统计表、扇形统计图的结合,从两个统计图中获取数量和数量之间的关系是解决问题的前提.21.“石头
精品解析:2022年江苏省连云港市中考数学真题(解析版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片