数学试题(考试时间:120分钟满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的所有试题的答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B铅笔,并请加黑加粗.第一部分选择题(共18分)一、选择题(本大题共有6小题,每小题3分,共18分.在每小题后所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列判断正确的是()A. B.C. D.【答案】B【解析】【分析】根据即可求解.【详解】解:由题意可知:,故选:B.【点睛】本题考查了无理数的估值,属于基础题.2.如图为一个几何体的表面展开图,则该几何体是()A.三棱锥 B.四棱锥 C.四棱柱 D.圆锥【答案】B【解析】【分析】底面为四边形,侧面为三角形可以折叠成四棱锥.【详解】解:由图可知,底面为四边形,侧面为三角形,∴该几何体是四棱锥,故选:B.【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键.3.下列计算正确的是()A. B.C. D.【答案】A【解析】【分析】运用合并同类项法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.【详解】解:A、,故选项正确,符合题意;B、,故选项错误,不符合题意;C、,故选项错误,不符合题意;D、不是同类项,不能合并,故选项错误,不符合题意;故选:A.【点睛】本题考查了合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.4.如图,一张圆桌共有3个座位,甲、乙,丙3人随机坐到这3个座位上,则甲和乙相邻的概率为()A. B. C. D.【答案】D【解析】【分析】由图可知,甲乙丙是彼此相邻的,所以甲的旁边是乙是必然事件,从而得出正确的选项.【详解】解:这张圆桌的3个座位是彼此相邻的,甲乙相邻是必然事件,所以甲和乙相邻的概率为1.故选:D.【点睛】此题考查了求概率,解题的关键是判断出该事件是必然事件.5.已知点在下列某一函数图像上,且那么这个函数是()A. B. C. D.【答案】D【解析】【分析】先假设选取各函数,代入自变量求出y1、y2、y3的值,比较大小即可得出答案.【详解】解:A.把点代入y=3x,解得y1=-9,y2=-3,y3=3,所以y1y2=y3,这与已知条件不符,故选项错误,不符合题意;C.把点代入y=,解得y1=-1,y2=-3,y3=3,所以y20时,x的取值范围是__________.【答案】x<1【解析】【分析】先用待定系数法,求出a的值.当y>0时,用含x的代数式表示y,解不等式即可.详解】解:把(1,0)代入一次函数,得a+2=0,解得:a=-2,∴,当y>0时,即,解得:x<1.故答案为:x<1.【点睛】此题考查了待定系数法求一次函数的解析式,一次函数与一元一次不等式,解题的关键是正确列出不等式,算出x的取值范围.13.如图,PA与⊙O相切于点A,PO与⊙O相交于点B,点C在上,且与点A,B不重合,若∠P=26°,则∠C的度数为_________°.【答案】32【解析】【分析】连接OA,根据切线的性质和直角三角形的性质求出∠O=64°.再根据圆周角的定理,求解即可.【详解】解:连接OA,∵PA与⊙O相切于点A,∴∠PAO=90°,∴∠O=90°-∠P,∵∠P=26°,∴∠O=64°,∴∠C=∠O=32°.故答案为:32.【点睛】此题考查了切线的性质以及圆周角定理,解题的关键是正确利用切线的定理,作出辅助线,求出∠O的度数.14.如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为__________.【答案】【解析】【分析】根据第一步马往外跳,第二步马再往回跳但路线不与第一步的路线重合,这样走两步后的落点与出发点距离最短.【详解】解:如下图所示:马第一步往外跳,可能的落点为A、B、C、D、E、F点,第二步往回跳,但路线不与第一步的路线重合,这样走两步后的落点与出发点距离最短,比如,第一步马跳到A点位置,第二步在从A点跳到G点位置,此时落点与出发点的距离最短为,故答案为:.【点睛】本题借助象棋中的“马走日”的规则考察了两点之间的距离公式,解题的关键是读懂题意.15.已知用“<”表示的大小关系为________.【答案】【解析】【分析】利用作差法及配方法配成完全平方式再与0比较大小即可求解.【详解】解:由题意可知:,∵,∴,∴;,当且仅当时取等号,此时与题意矛盾,∴∴;,同理,故答案为:.【点睛】本题考查了两代数式通过作差比较大小,将作差后的结果配成完全平方式,利用完全平方式总是大于等于0的即可与0比较大小.16.如图上,O为内心,过点O直线分别与AC、AB相交于D、E,若DE=CD+BE,则线段CD的长为__________.【答案】2或##或2【解析】【分析】分析判断出符合题意的DE的情况,并求解即可;【详解】解:①如图,作,,连接OB,则OD⊥AC,∵,∴∵O为的内心,∴,∴∴,同理,,∴DE=CD+BE,∵O为的内心,∴,∴∴∴②如图,作,由①知,,,∵∴∴∴∴∵∴∴故答案为:2或.【点睛】本题主要考查三角形内心的性质、勾股定理、三角形的相似,根据题意正确分析出符合题意的情况并应用性质定理进行求解是解题的关键.三、解答题(本道题共10题,共102分,请在答题中指定区域作答。解答时应写出必要的文字说明,证明过程或演算步骤。)17.计算:(1)计算:;(2)按要求填空:小王计算的过程如下:解:小王计算的第一步是(填“整式乘法”或“因式分解”),计算过程的第步出现错误.直接写出正确的计算结果是.【答案】(1)(2)因式分解;三和五;【解析】【分析】(1)先化成最简二次根式,然后根据二次根式的四则运算法则求解即可;(2)按照分式的加减运算法则逐步验算即可.【小问1详解】解:原式;【小问2详解】解:由题意可知:故小王的计算过程中第三步和第五步出现了错误;最终正确的计算结果为.故答案为:因式分解,第三步和第五步,【点睛】本题考查二次根式的四则运算法则及分式的加减运算法则,属于基础题,熟练掌握运算法则是解题的关键.18.农业、工业和服务业统称为“三产”,2021年泰州市“三产”总值增长率在全省排名第一.观察下列两幅统计图,回答问题.(1)2017—2021年农业产值增长率的中位数是%﹔若2019年“三产”总值为5200亿元,则2020年服务业产值比2019年约增加亿元(结果保留整数).(2)小亮观察折线统计图后认为:这五年中,每年服务业产值都比工业产值高,你同意他的说法吗?请结合扇形统计图说明你的理由.【答案】(1)2.8,96(2)不同意,理由见解析【解析】【分析】(1)2017—2021年农业产值增长率按照从小到大排列后,按照中位数的定义求解即可,先求出2019年的服务业产值,再用2020年的服务业产值增长率乘以2019年服务业产值;(2)先从折线统计图分析,再从扇形统计图分析即可.【小问1详解】解:∵2017—2021年农业产值增长率按照从小到大排列为:2.3%,2.7%,2.8%,2.8%,3.0%,∴中位数为2.8%,2019年服务业产值为:5200×45%=2340(亿元),2020年服务业产值比2019年约增加:2340×4.1%=95.94≈96(亿元);故答案为:2.8,96【小问2详解】解:不同意,理由是:从折线统计图看,每年服务业产值的增长率都比工业产值的增长率高,因为不知道每年的具体数量和占当年的百分比,所以这五年中,每年服务业产值都比工业产值高是错误的,例如:从扇形统计图看,2019年服务业产值占“三产”的比重为45%,工业产值占“三产”的比重为49%,服务业产值低于工业产值,∴每年服务业产值都比工业产值高是错误的.【点睛】此题考查了扇形统计图、折线统计图、中位数等知识,读懂题意,从统计图中获取有用信息,数形结合是解题的关键.19.即将在泰州举办的江苏省第20届运动会带动了我市的全民体育热,小明去某体育馆锻炼,该体育馆有A、B两个进馆通道和C、D、E三个出馆通道,从进馆通道进馆的可能性相同,从出馆通道出馆的