江苏省连云港市2021年中考数学真题(解析版)

2023-10-31 · U1 上传 · 29页 · 2.9 M

2021年江苏省连云港市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.相反数是()A. B. C. D.3【答案】D【解析】【分析】根据相反数的意义,只有符号不同的两个数称为相反数.【详解】解:的相反数是3.故选:D.【点睛】本题考查了相反数的意义.只有符号不同的两个数为相反数,0的相反数是0.2.下列运算正确的是()A. B.C. D.【答案】D【解析】【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案.【详解】解:A,与不是同类项,不能合并,故选项错误,不符合题意;B,与不是同类项,不能合并得到常数值,故选项错误,不符合题意;C,合并同类项后,故选项错误,不符合题意;D,完全平方公式:,故选项正确,符合题意;故选:D.【点睛】本题考查了代数式的运算,同类项合并及完全平方差公式,解题的关键是:掌握相关的运算法则.3.2021年5月18日上午,江苏省人民政府召开新闻发布会,公布了全省最新人口数据,其中连云港市的常住人口约为4600000人.把“4600000”用科学记数法表示为()A. B. C. D.【答案】C【解析】【分析】根据公式(n为正整数)表示出来即可.【详解】解:4600000=故选:C.【点睛】本题主要考查了科学记数法,关键是根据公式(n为正整数)将所给数据表示出来.4.正五边形的内角和是()A. B. C. D.【答案】B【解析】【分析】n边形的内角和是,把多边形的边数代入公式,就得到多边形的内角和.【详解】(5﹣2)×180°=540°.故选B.【点睛】本题考查了多边形的内角和与外角和定理,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.5.如图,将矩形纸片沿折叠后,点D、C分别落在点、的位置,的延长线交于点G,若,则等于()A. B. C. D.【答案】A【解析】【分析】由矩形得到AD//BC,∠DEF=∠EFG,再由与折叠的性质得到∠DEF=∠GEF=∠EFG,用三角形的外角性质求出答案即可.【详解】解:∵四边形ABCD是矩形,∴AD//BC,∵矩形纸片沿折叠,∴∠DEF=∠GEF,又∵AD//BC,∴∠DEF=∠EFG,∴∠DEF=∠GEF=∠EFG=64︒,∵是△EFG的外角,∴=∠GEF+∠EFG=128︒故选:A.【点睛】本题考查了矩形的性质与折叠的性质,关键在于折叠得出角相等,再由平行得到内错角相等,由三角形外角的性质求解.6.关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点;乙:函数图像经过第四象限;丙:当时,y随x的增大而增大.则这个函数表达式可能是()A. B. C. D.【答案】D【解析】【分析】根据所给函数的性质逐一判断即可.【详解】解:A.对于,当x=-1时,y=1,故函数图像经过点;函数图象经过二、四象限;当时,y随x的增大而减小.故选项A不符合题意;B.对于,当x=-1时,y=-1,故函数图像不经过点;函数图象分布在一、三象限;当时,y随x的增大而减小.故选项B不符合题意;C.对于,当x=-1时,y=1,故函数图像经过点;函数图象分布在一、二象限;当时,y随x的增大而增大.故选项C不符合题意;D.对于,当x=-1时,y=1,故函数图像经过点;函数图象经过二、四象限;当时,y随x的增大而增大.故选项D符合题意;故选:D【点睛】本题考查的是一次函数、二次函数以及反比例函数的性质,熟知相关函数的性质是解答此题的关键.7.如图,中,,、相交于点D,,,,则的面积是()A. B. C. D.【答案】A【解析】【分析】过点C作的延长线于点,由等高三角形的面积性质得到,再证明,解得,分别求得AE、CE长,最后根据的面积公式解题.【详解】解:过点C作的延长线于点,与是等高三角形,设,故选:A.【点睛】本题考查相似三角形的判定与性质、正切等知识,是重要考点,掌握相关知识是解题关键.8.如图,正方形内接于,线段在对角线上运动,若的面积为,,则周长的最小值是()A.3 B.4 C.5 D.6【答案】B【解析】【分析】利用将军饮马之造桥选址的数学方法进行计算.【详解】如图所示,(1)为上一动点,点关于线段的对称点为点,连接,则,过点作的平行线,过点作的平行线,两平行线相交于点,与相交于点M.四边形是平行四边形则(2)找一点,连接,则,过点作的平行线,连接则.此时(1)中周长取到最小值四边形是平行四边形四边形是正方形,又,,又是等腰三角形,则圆的半径,故选:B.【点睛】本题难度较大,需要具备一定几何分析方法.关键是要找到周长取最小值时的位置.二、填空题(本大题共有8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.一组数据2,1,3,1,2,4的中位数是______.【答案】2【解析】【分析】先排序,再进行计算;【详解】解:从小到大排序为:1,1,2,2,3,4,∵数字有6个,∴中位数为:,故答案是2.【点睛】本题主要考查了中位数求解,准确计算是解题的关键.10.计算__________.【答案】5【解析】【分析】直接运用二次根式的性质解答即可.【详解】解:5.故填5.【点睛】本题主要考查了二次根式的性质,掌握成为解答本题的关键.11.分解因式:____.【答案】(3x+1)2【解析】【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x+1)2,故答案为:(3x+1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.12.已知方程有两个相等的实数根,则=____.【答案】【解析】【分析】【详解】试题分析:∵有两个相等的实数根,∴△=0,∴9-4k=0,∴k=.故答案为.考点:根的判别式.13.如图,、是的半径,点C在上,,,则______.【答案】25【解析】【分析】连接OC,根据等腰三角形的性质和三角形内角和定理得到∠BOC=100°,求出∠AOC,根据等腰三角形的性质计算.【详解】解:连接OC,∵OC=OB,∴∠OCB=∠OBC=40°,∴∠BOC=180°-40°×2=100°,∴∠AOC=100°+30°=130°,∵OC=OA,∴∠OAC=∠OCA=25°,故答案为:25.【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.14.如图,菱形的对角线、相交于点O,,垂足为E,,,则的长为______.【答案】【解析】【分析】直接利用菱形的性质得出AO,DO的长,再利用勾股定理得出菱形的边长,进而利用等面积法得出答案.【详解】解:∵菱形ABCD的对角线AC、BD相交于点O,且AC=8,DB=6,∴AO=4,DO=3,∠AOD=90°,∴AD=5,在中,由等面积法得:,∴故答案为:.【点睛】本题考查了菱形的性质,勾股定理,直角三角形斜边上的高的求法(等面积法),熟记性质与定理是解题关键.15.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.【答案】1264【解析】【分析】根据题意,总利润=快餐的总利润+快餐的总利润,而每种快餐的利润=单件利润×对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可.【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份.据题意:∴∵∴当的时候,W取到最大值1264,故最大利润为1264元故答案为:1264【点睛】本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点.16.如图,是的中线,点F在上,延长交于点D.若,则______.【答案】【解析】【分析】连接ED,由是的中线,得到,,由,得到,设,由面积的等量关系解得,最后根据等高三角形的性质解得,据此解题即可.【详解】解:连接ED是的中线,,设,与是等高三角形,,故答案为:.【点睛】本题考查三角形的中线、三角形的面积等知识,是重要考点,难度一般,掌握相关知识是解题关键.三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.计算:.【答案】4.【解析】【分析】由,,计算出结果.【详解】解:原式故答案为:4.【点睛】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算.18.解不等式组:.【答案】x2【解析】【分析】按照解一元一次不等式组的一般步骤进行解答即可.【详解】解:解不等式3x﹣1x+1,得:x1,解不等式x+44x﹣2,得:x2,∴不等式组的解集为x2.【点睛】本题考查了解一元一次不等式组,熟悉“解一元一次不等式的方法和确定不等式组解集的方法”是解答本题的关键.19.解方程:.【答案】无解【解析】【分析】将分式去分母,然后再解方程即可.【详解】解:去分母得:整理得,解得,经检验,是分式方程的增根,故此方程无解.【点睛】本题考查的是解分式方程,要注意验根,熟悉相关运算法则是解题的关键.20.端午节吃粽子是中华民族的传统习俗.某食品厂为了解市民对去年销量较好的A、B、C、D四种粽子的喜爱情况,在端午节前对某小区居民进行抽样调查(每人只选一种粽子),并将调查情况绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中,D种粽子所在扇形的圆心角是______;(3)这个小区有2500人,请你估计爱吃B种粽子的人数为______.【答案】(1)见解析;(2)108;(3)500【解析】【分析】(1)由A种粽子数量240除以占比40%可得粽子总数为600个,继而解得B种粽子的数量即可解题;(2)将D种粽子数量除以总数再乘以360°即可解题;(3)用B种粽子的人数除以总数再乘以2500即可解题.【详解】解:(1)由条形图知,A种粽子有240个,由扇形图知A种粽子占总数的40%,可知粽子总数有:(个)B种粽子有(个);(2),故答案为:108;(3)(人),故答案为:500.【点睛】本题考查条形统计图、扇形统计图、求扇形的圆心角、用样本估计总体等知识,是重要考点,难度较易,掌握相关知识是解题关键.21.为了参加全市中学生“党史知识竞赛”,某校准备从甲、乙2名女生和丙、丁2名男生中任选2人代表学校参加比赛.(1)如果已经确定女生甲参加,再从其余的候选人中随机选取1人,则女生乙被选中的概率是______;(2)求所选代表恰好为1名女生和1名男生的概率.【答案】(1);(2)【解析】【分析】(1)由一共有3种等可能性的结果,其中恰好选中女生乙的有1种,即可求得答案;(2)先求出全部情况的总数,再求出符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)∵已确定女生甲参加比赛,再从其余3名同学中随机选取1名有3种结果,其中恰好选中女生乙的只有1种,∴恰好选中乙的概率为;故答案为:;(2)分别用字母A,B表示女生,C,D表示男生画树状如下:4人任选2人共有12种等可能结果,其中1名女生和1名男生有8种,∴(1女1男).答:所选代表恰好为1名女生和1名男生的概率是.【点睛】本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,点C是的中点,四边形是平行四边形.(1)求证:四边形是平行四边形;(2)如果,求证:四边形是矩形.【答案】(1)见解析;(2)见解析【解析】【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐