精品解析:2020年浙江省宁波市中考数学试题(解析版)

2023-10-31 · U1 上传 · 25页 · 986 K

2020年浙江省宁波市中考数学试题一、选择题1.﹣3的相反数为( )A.﹣3 B.﹣ C. D.3【答案】D【解析】【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【详解】解:﹣3的相反数是3.故选:D.【点睛】此题考查求一个数的相反数,解题关键在于掌握相反数的概念.2.下列计算正确的是( )A.a3•a2=a6 B.(a3)2=a5 C.a6÷a3=a3 D.a2+a3=a5【答案】C【解析】分析】根据同底数幂相乘、幂的乘方、同底数幂相除及合并同类项法则逐一判断即可得.【详解】解:A、a3•a2=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、a6÷a3=a3,正确;D、a2+a3,不是同类项,不能合并,故此选项错误;故选:C.【点睛】本题主要考查整式的运算,解题的关键是掌握同底数幂相乘、幂的乘方、同底数幂相除及合并同类项法则.3.2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为( )A.1.12×108 B.1.12×109 C.1.12×1010 D.0.112×1010【答案】B【解析】【分析】科学记数法表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】1120000000=1.12×109,故选:B.【点睛】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是( )A. B.C. D.【答案】B【解析】【分析】根据主视图的意义和画法可以得出答案.【详解】解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.【点睛】本题考查了简单几何体的三视图的画法,主视图就是从正面看物体所得到的图形.5.一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为( )A. B. C. D.【答案】D【解析】【分析】利用红球的个数除以球的总个数解答即可.【详解】解:从袋中任意摸出一个球是红球的概率=.故选:D.【点睛】本题考查了简单的概率计算,属于基础题型,熟练掌握计算的方法是关键.6.二次根式中字母x的取值范围是( )A.x>2 B.x≠2 C.x≥2 D.x≤2【答案】C【解析】【分析】根据被开方数大于等于0列不等式求解即可.【详解】由题意得,x﹣2≥0,解得x≥2.故选:C.【分析】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.7.如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为( )A.2 B.2.5 C.3 D.4【答案】B【解析】【分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=CD.【详解】解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10.又∵CD为中线,∴CD=AB=5.∵F为DE中点,BE=BC,即点B是EC的中点,∴BF是△CDE的中位线,则BF=CD=2.5.故选:B.【点睛】本题主要考查了勾股定理,三角形中位线定理,直角三角形斜边上的中线,此题的突破口是推知线段CD的长度和线段BF是△CDE的中位线.8.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为( )A. B.C D.【答案】A【解析】【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子=木条+4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:绳子=木条-1,据此列出方程组即可.【详解】解:设木条长x尺,绳子长y尺,那么可列方程组为:,故选:A.【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.9.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是( )A.abc<0 B.4ac﹣b2>0C.c﹣a>0 D.当x=﹣n2﹣2(n为实数)时,y≥c【答案】D【解析】【分析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据一次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2-4ac>0,求得4ac-b2<0,故B错误;根据对称轴方程得到b=2a,当x=-1时,y=a-b+c<0,于是得到c-a<0,故C错误;当x=-n2-2(n为实数)时,代入解析式得到y=ax2+bx+c=a(-n2-2)+b(-n2-2)=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.【详解】解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣<0,所以b>0,∴abc>0,故A错误;∴一次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵﹣=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.10.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道( )A.△ABC的周长 B.△AFH的周长C.四边形FBGH的周长 D.四边形ADEC的周长【答案】A【解析】【分析】由等边三角形的性质和三角形的内角和定理可得:FH=GH,∠ACB=∠A=60°,∠AHF=∠HGC,进而可根据AAS证明△AFH≌△CHG,可得AF=CH,然后根据等量代换和线段间的和差关系即可推出五边形DECHF的周长=AB+BC,从而可得结论.【详解】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质以及多边形的周长问题,熟练掌握等边三角形的性质以及全等三角形的判定和性质是解题的关键.二、填空题(每小题5分,共30分)11.实数8的立方根是_____.【答案】2.【解析】【分析】根据立方根的定义解答.【详解】∵,∴8的立方根是2.故答案为2.【点睛】本题考查立方根的定义,熟记定义是解题的关键..12.分解因式:2a2﹣18=________.【答案】2(a+3)(a﹣3)【解析】【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】2a2﹣18=2(a2﹣9)=2(a+3)(a﹣3).故答案为2(a+3)(a﹣3).【点睛】本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙454542S21.8231.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是__.【答案】甲【解析】【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.14.如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为__cm(结果保留π).【答案】18π【解析】【分析】根据弧长公式即可得到结论.【详解】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,∴的长==18π(cm),故答案为:18π.【点睛】本题考查了弧长的计算,熟练掌握弧长公式是解题的关键.15.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为__.【答案】2【解析】【分析】先根据切线的性质和等腰直角三角形的判定方法证得△OBC是等腰直角三角形,当AOC=90°,连接OB,根据勾股定理可得斜边AC的长,当OAC=90°,A与B重合,不符合题意.【详解】解:连接OB,∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,当∠AOC=90°,△OAC是直角三角形时,∴OC=OB=2,∴AC===2;当OAC=90°,A与B重合,不符合题意,故排除此种情况;∴其斜边长为2,故答案为:2.【点睛】本题考查切斜的性质、等腰直角三角形的判定及其性质、勾股定理,解题的关键是综合运用所学的知识求出OC.16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为__,的值为__.【答案】(1).24(2).﹣【解析】【分析】如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.求出证明四边形ACDE是平行四边形,推出S△ADE=S△ADC=S五边形ABCDE-S四边形ABCD=56-32=24,推出S△AOE=S△DEO=12,可得a-b=12,推出a-b=24.再证明BC∥AD,证明AD=3BC,推出AT=3BT,再证明AK=3BK即可解决问题.【详解】如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=的图象上,∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,∴S△AOE=S△DEO=12,∴a﹣b=12,∴a﹣b=24,∵S△AOC=S△AOB=12,∴BC∥AD,∴=,∵S△ACB=32﹣24=8,∴S△A

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐