2019年湖北省黄石市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是( )A.﹣3 B.﹣0.5 C. D.2.(3分)国际行星命名委员会将紫金山天文台于2007年9月11日发现的编号为171448的小行星命名为“谷超豪星”,则171448用科学记数法可表示为( )A.0.171448×106 B.1.71448×105 C.0.171448×105 D.1.71448×1063.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.4.(3分)如图,该正方体的俯视图是( )A. B. C. D.5.(3分)化简(9x﹣3)﹣2(x+1)的结果是( )A.2x﹣2 B.x+1 C.5x+3 D.x﹣36.(3分)若式子在实数范围内有意义,则x的取值范围是( )A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<17.(3分)如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是( )A.(﹣1,2) B.(1,4) C.(3,2) D.(﹣1,0)8.(3分)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=( )A.125° B.145° C.175° D.190°9.(3分)如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y(x>0)的图象与线段AB相交于点C,且C是线段AB的中点,点C关于直线y=x的对称点C'的坐标为(1,n)(n≠1),若△OAB的面积为3,则k的值为( )A. B.1 C.2 D.310.(3分)如图,矩形ABCD中,AC与BD相交于点E,AD:AB:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时( )A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)分解因式:x2y2﹣4x2= .12.(3分)分式方程:1的解为 .13.(3分)如图,一轮船在M处观测灯塔P位于南偏西30°方向,该轮船沿正南方向以15海里/小时的速度匀速航行2小时后到达N处,再观测灯塔P位于南偏西60°方向,若该轮船继续向南航行至灯塔P最近的位置T处,此时轮船与灯塔之间的距离PT为 海里(结果保留根号).14.(3分)根据下列统计图,回答问题:该超市10月份的水果类销售额 11月份的水果类销售额(请从“>”“=”“<”中选一个填空).15.(3分)如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C、D两点的⊙O分别交AC、BC于点E、F,AD,∠ADC=60°,则劣弧的长为 .16.(3分)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵,则第20行第19个数是 .三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(7分)计算:(2019﹣π)0+|1|﹣2sin45°+()﹣1.18.(7分)先化简,再求值:(x﹣2),其中|x|=2.19.(7分)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.20.(7分)已知关于x的一元二次方程x2﹣6x+(4m+1)=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根为x1、x2,且|x1﹣x2|=4,求m的值.21.(8分)如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.(1)求证:∠C=∠BAD;(2)求证:AC=EF.22.(8分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n,组成一数对(m,n).(1)请写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.23.(8分)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?24.(10分)如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD,求弦AC的长.25.(10分)如图,已知抛物线yx2+bx+c经过点A(﹣1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M的坐标;(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)2019年湖北省黄石市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是( )A.﹣3 B.﹣0.5 C. D.【分析】根据绝对值的性质以及正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小判断即可.【解答】解:∵|﹣3|=3,|﹣0.5|=0.5,||,||且0.53,∴所给的几个数中,绝对值最大的数是﹣3.故选:A.2.(3分)国际行星命名委员会将紫金山天文台于2007年9月11日发现的编号为171448的小行星命名为“谷超豪星”,则171448用科学记数法可表示为( )A.0.171448×106 B.1.71448×105 C.0.171448×105 D.1.71448×106【分析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7760000用科学记数法表示为:1.71448×105.故选:B.3.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.4.(3分)如图,该正方体的俯视图是( )A. B. C. D.【分析】俯视图是从物体上面看所得到的图形,据此判断正方体的俯视图.【解答】解:正方体的主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形都是正方形,故选:A.5.(3分)化简(9x﹣3)﹣2(x+1)的结果是( )A.2x﹣2 B.x+1 C.5x+3 D.x﹣3【分析】原式去括号合并即可得到结果.【解答】解:原式=3x﹣1﹣2x﹣2=x﹣3,故选:D.6.(3分)若式子在实数范围内有意义,则x的取值范围是( )A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<1【分析】分式有意义,分母不等于零;二次根式的被开方数是非负数.【解答】解:依题意,得x﹣1≥0且x﹣200,解得x≥1且x≠2.故选:A.7.(3分)如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B'的坐标是( )A.(﹣1,2) B.(1,4) C.(3,2) D.(﹣1,0)【分析】根据旋转可得:CB'=CB=2,∠BCB'=90°,可得B'的坐标.【解答】解:如图所示,由旋转得:CB'=CB=2,∠BCB'=90°,∵四边形ABCD是正方形,且O是AB的中点,∴OB=1,∴B'(2+1,2),即B'(3,2),故选:C.8.(3分)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=( )A.125° B.145° C.175° D.190°【分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.【解答】解:∵CD⊥AB,F为边AC的中点,∴DFAC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.9.(3分)如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y(x>0)的图象与线段AB相交于点C,且C是线段AB的中点,点C关于直线y=x的对称点C'的坐标为(1,n)(n≠1),若△OAB的面积为3,则k的值为( )A. B.1 C.2 D.3【分析】根据对称性求出C点坐标,进而得OA与AB的长度,再根据已知三角形的面积列出n的方程求得n,进而用待定系数法求得k.【解答】解:∵点C关于直线y=x的对称点C'的坐标为(1,n)(n≠1),∴C(n,1),∴OA=n,AC=1,∴AB=2AC=2,∵△OAB的面积为3,∴,解得,n=3,∴C(3,1),∴k=3×1=3.故选:D.10.(3分)如图,矩形ABCD中,AC与BD相交于点E,AD:AB:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时( )A. B. C. D.【分析】设BD与AF交于点M.设AB=a,ADa,根据矩形的性质可得△ABE、△CDE都是等边三角形,利用折叠的性质得到BM垂直平分AF,BF=AB=a,DF=DAa.解直角△BGM,求出BM,再表示DM,由△ADM∽△GBM,求出a=2,再证明CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.建立平面直角坐标系,得出B(3,2),B′(3,﹣2),E(0,),利用待定系数法求出直线B′E的解析式,得到H(1,0),然后利用两点间的距离公式求出BH=4,进而求出.【解答】解:如图,设BD与AF交于点M.设AB=a,ADa,∵四边形ABCD是矩形,∴∠DAB=90°,tan∠ABD,∴BD=A
湖北省黄石市2019年中考数学真题试题(含解析)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片