2014年黑龙江省牡丹江市中考数学试卷(含解析版)

2023-10-31 · U1 上传 · 37页 · 694.8 K

2014年黑龙江省牡丹江市中考数学试卷一、选择题(每小题3分,满分27分)1.(3分)(2014•牡丹江)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A.B.C.D.2.(3分)(2014•牡丹江)在函数y=中,自变量x的取值范围是( ) A.x≥0B.x>0C.x≠0D.x>0且x≠13.(3分)(2014•牡丹江)下列计算正确的是( ) A.2a2+a=3a2B.2a﹣1=(a≠0)C.(﹣a2)3÷a4=﹣aD.2a2•3a3=6a54.(3分)(2014•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是( ) A.3B.4C.5D.65.(3分)(2014•牡丹江)将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是( ) A.(0,2)B.(0,3)C.(0,4)D.(0,7)6.(3分)(2014•牡丹江)若x:y=1:3,2y=3z,则的值是( ) A.﹣5B.﹣C.D.57.(3分)(2014•牡丹江)如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是( ) A.30°B.45°C.60°D.75°8.(3分)(2014•牡丹江)如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P从点A出发,以每秒1个单位长的速度沿A→B→C→D的路线运动,当点P运动到点D时停止运动,那么△APD的面积S与点P运动的时间t之间的函数关系的图象是( ) A.B.C.D.9.(3分)(2014•牡丹江)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是( ) A.1B.2C.3D.4二、填空题(每小题3分,满分33分)10.(3分)(2014•牡丹江)2014年我国农村义务教育保障资金约为87900000000元,请将数87900000000用科学记数法表示为 .11.(3分)(2014•牡丹江)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件 ,使△ABC≌△DEF.12.(3分)(2014•牡丹江)某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为 元.13.(3分)(2014•牡丹江)一组数据2,3,x,y,12中,唯一的众数是12,平均数是6,这组数据的中位数是 .14.(3分)(2014•牡丹江)⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为 .15.(3分)(2014•牡丹江)在一个不透明的口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地取出一个小球然后放回,再随机地取出一个小球,则两次取出小球的标号的和是3的倍数的概率是 .16.(3分)(2014•牡丹江)如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为 .17.(3分)(2014•牡丹江)如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC中点,将△ABC绕点D逆时针旋转45°,得到△A′B′C′,B′C′与AB交于点E,则S四边形ACDE= .18.(3分)(2014•牡丹江)抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c= .19.(3分)(2014•牡丹江)如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为 .20.(3分)(2014•牡丹江)矩形ABCD中,AB=2,BC=1,点P是直线BD上一点,且DP=DA,直线AP与直线BC交于点E,则CE=. 三、解答题(满分60分)21.(5分)(2014•牡丹江)先化简,再求值:(x﹣)÷,其中x=cos60°. 22.(6分)(2014•牡丹江)如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,). 23.(6分)(2014•牡丹江)在△ABC中,AB=AC=5,BC=6,以AC为一边作正方形ACDE,过点D作DF⊥BC交直线BC于点F,连接AF,请你画出图形,直接写出AF的长,并画出体现解法的辅助线. 24.(7分)(2014•牡丹江)某校为了了解本校九年级学生的视力情况(视力情况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样调查,将调查结果进行整理后,绘制了如下不完整的统计图,其中不近视与重度近视人数的和是中度近视人数的2倍.请你根据以上信息解答下列问题:(1)求本次调查的学生人数;(2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是 度;(3)若该校九年级学生有1050人,请你估计该校九年级近视(包括轻度近视,中度近视,重度近视)的学生大约有多少人. 25.(8分)(2014•牡丹江)快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案. 26.(8分)(2014•牡丹江)如图,在等边△ABC中,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.(1)当点D在线段BC上,∠NDB为锐角时,如图①,求证:CF+BE=CD;(提示:过点F作FM∥BC交射线AB于点M.)(2)当点D在线段BC的延长线上,∠NDB为锐角时,如图②;当点D在线段CB的延长线上,∠NDB为钝角时,如图③,请分别写出线段CF,BE,CD之间的数量关系,不需要证明;(3)在(2)的条件下,若∠ADC=30°,S△ABC=4,则BE= ,CD= . 27.(10分)(2014•牡丹江)某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A,B两种型号的产品共80件,已知每件A型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题:(1)该工厂有哪几种生产方案?(2)在这批产品全部售出的条件下,若1件A型号产品获利35元,1件B型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?(3)在(2)的条件下,工厂决定将所有利润的25%全部用于再次购进甲、乙两种原料,要求每种原料至少购进4千克,且购进每种原料的数量均为整数.若甲种原料每千克40元,乙种原料每千克60元,请直接写出购买甲、乙两种原料之和最多的方案. 28.(10分)(2014•牡丹江)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB与CD相交于点E,线段OA,OC的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.(1)求点A,C的坐标;(2)若反比例函数y=的图象经过点E,求k的值;(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由. 2014年黑龙江省牡丹江市中考数学试卷 参考答案与试题解析一、选择题(每小题3分,满分27分)1.(3分)(2014•牡丹江)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故此选项错误;B、是中心对称图形,不是轴对称图形.故此选项错误;C、既是轴对称图形,不是中心对称图形.故此选项正确;D、不是轴对称图形,是中心对称图形.故此选项错误.故答案选:C.点评:本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2.(3分)(2014•牡丹江)在函数y=中,自变量x的取值范围是( ) A.x≥0B.x>0C.x≠0D.x>0且x≠1考点:函数自变量的取值范围.分析:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.解答:解:根据题意得到:x>0,故选B.点评:本题考查了函数式有意义的x的取值范围.判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆. 3.(3分)(2014•牡丹江)下列计算正确的是( ) A.2a2+a=3a2B.2a﹣1=(a≠0)C.(﹣a2)3÷a4=﹣aD.2a2•3a3=6a5考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式;负整数指数幂.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、2a2+a,不是同类项不能合并,故A选项错误;B、2a﹣1=(a≠0),故B选项错误;C、(﹣a2)3÷a4=﹣a2,故C选项错误;D、2a2•3a3=6a5,故D选项正确.故选:D.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题关键是熟记法则. 4.(3分)(2014•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是( ) A.3B.4C.5D.6考点:由三视图判断几何体.分析:根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.解答:解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.点评:本题考查了由几何体判断三视图,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案. 5.(3分)(2014•牡丹江)将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是( ) A.(0,2)B.(0,3)C.(0,4)D.(0,7)考点:二次函数图象与几何变换.专题:几何变换.分析:先根据顶点式确定抛物线y=(x﹣1)2+3的顶点坐标为(1,3),在利用点的平移得到平移后抛物线的顶点坐标为(0,3),于是得到移后抛物线解析式为y=x2+3,然后求平移后的抛物线与y轴的交点坐标.解答:解:抛

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐