专题09双曲线中的定点、定值、定直线问题一、单选题1.已知为坐标原点,点在双曲线(为正常数)上,过点作双曲线的某一条渐近线的垂线,垂足为,则的值为()A. B. C. D.无法确定2.已知点,是双曲线(,)的左、右顶点,,是双曲线的左、右焦点,若,是双曲线上异于,的动点,且直线,的斜率之积为定值,则()A.2 B. C. D.43.已知双曲线的一个焦点与抛物线的焦点重合,且与直线交于两点,若中点的横坐标为,则此双曲线的标准方程是A. B.C. D.4.已知,是双曲线的焦点,是过焦点的弦,且的倾斜角为,那么的值为A.16 B.12 C.8 D.随变化而变化5.已知双曲线C:()的左、右焦点分别为,,点A是双曲线右支上一点,且(O为坐标原点),则()A.2 B.3 C.4 D.56.已知双曲线,为坐标原点,,为双曲线上两动点,且,则()A.2 B.1 C. D.7.已知双曲线上有不共线的三点,且的中点分别为,若的斜率之和为-2,则A.-4 B. C.4 D.68.已知双曲线x29−y216=1,过其右焦点F的直线交双曲线于P,Q两点,线段PQ的中垂线交x轴于点M,则MFPQ的值为()A.53 B.58 C.54 D.56二、多选题9.已知为双曲线上一点,,,令,,下列为定值的是()A. B.C. D.10.已知双曲线的离心率为2,点,是上关于原点对称的两点,点是的右支上位于第一象限的动点(不与点、重合),记直线,的斜率分别为,,则下列结论正确的是()A.以线段为直径的圆与可能有两条公切线B.C.存在点,使得D.当时,点到的两条渐近线的距离之积为311.已知双曲线(,),,是其左、右顶点,,是其左、右焦点,是双曲线上异于,的任意一点,下列结论正确的是()A.B.直线,的斜率之积等于定值C.使得为等腰三角形的点有且仅有8个D.的面积为12.已知双曲线,不与轴垂直的直线与双曲线右支交于点,,(在轴上方,在轴下方),与双曲线渐近线交于点,(在轴上方),为坐标原点,下列选项中正确的为()A.恒成立B.若,则C.面积的最小值为1D.对每一个确定的,若,则的面积为定值三、填空题13.双曲线的左、右两支上各有一点A、B,点B在直线上的射影是点,若直线AB过右焦点,则直线必定经过的定点的坐标为___________.14.已知双曲线C:-y2=1,直线l:y=kx+m与双曲线C相交于A,B两点(A,B均异于左、右顶点),且以线段AB为直径的圆过双曲线C的左顶点D,则直线l所过定点为________.15.双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_____.16.已知双曲线,过双曲线上任意一点分别作斜率为和的两条直线和,设直线与轴、轴所围成的三角形的面积为,直线与轴、轴所围成的三角形的面积为,则的值为________.四、解答题17.已知,分别是双曲线的左,右顶点,直线(不与坐标轴垂直)过点,且与双曲线交于,两点.(1)若,求直线的方程;(2)若直线与相交于点,求证:点在定直线上.18.已知双曲线实轴端点分别为,,右焦点为,离心率为2,过点且斜率1的直线与双曲线交于另一点,已知的面积为.(1)求双曲线的方程;(2)若过的直线与双曲线交于,两点,试探究直线与直线的交点是否在某条定直线上?若在,请求出该定直线方程;若不在,请说明理由.19.已知双曲线:的左、右顶点分别为,过右焦点的直线与双曲线的右支交于两点(点在轴上方).(1)若,求直线的方程;(2)设直线的斜率分别为,,证明:为定值.20.已知双曲线的一个焦点为,且经过点(1)求双曲线C的标准力程;(2)己知点A是C上一定点,过点的动直线与双曲线C交于P,Q两点,若为定值,求点A的坐标及实数的值.21.已知双曲线的离心率为,且该双曲线经过点.(1)求双曲线C的方程;(2)设斜率分别为,的两条直线,均经过点,且直线,与双曲线C分别交于A,B两点(A,B异于点Q),若,试判断直线AB是否经过定点,若存在定点,求出该定点坐标;若不存在,说明理由.22.在平面直角坐标系中,已知动点到点的距离与它到直线的距离之比为.记点的轨迹为曲线.(1)求曲线的方程;(2)过点作两条互相垂直的直线,.交曲线于,两点,交曲线于,两点,线段的中点为,线段的中点为.证明:直线过定点,并求出该定点坐标.
高考数学专题09 双曲线中的定点、定值、定直线问题-高考数学圆锥曲线重难点专题突破(全国通用)(原
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片