2012年高考真题数学【文】(山东卷)(原卷版)

2023-10-27 · U3 上传 · 2页 · 696 K

2012年普通高等学校招生全国统一考试(山东卷)(A)内切 (B)相交 (C)外切 (D)相离cos6x(10)函数y的图象大致为文科数学2x2x第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.x2y2(11)已知双曲线C:1(a0,b0)的离心率为2.若抛物线C:x22py(p0)的焦点到双曲线C的渐近(1)若复数z满足z(2i)117i(i为虚数单位),则z为1a2b221(A)3+5i(B)3-5i(C)-3+5i (D)-3-5i线的距离为2,则抛物线C2的方程为已知全集,集合,,则为(2)U{0,1,2,3,4}A{1,2,3}B{2,4}(UA)B283216322(A)xy (B)xy (C)x8y (D)x16y[来源:Z_xx_k.Com]33(A){1,2,4}(B){2,3,4}(C){0,2,4}(D){0,2,3,4}1212(12)设函数f(x),g(x)xbx.若yf(x)的图象与yg(x)的图象有且仅有两个不同的公共点(3)函数f(x)4x的定义域为xln(x1)A(x1,y1),B(x2,y2),则下列判断正确的是(A)[2,0)(0,2](B)(1,0)(0,2](C)[2,2](D)(1,2](A)xx0,yy0 (B)xx0,yy0(4)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A12121212 样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是(C)x1x20,y1y20(D)x1x20,y1y20众数 平均数 中位数 标准差(A)(B)(C)(D)第Ⅱ卷(共90分)(5)设命题p:函数ysin2x的最小正周期为;命题q:函数ycosx的图象关于直线x对称.则下列判断22二、填空题:本大题共4小题,每小题4分,共16分.正确的是(13)如图,正方体ABCDA1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥(A)p为真 (B)q为假 (C)pq为假 (D)pq为真ADED1的体积为_____.x2y2,(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分(6)设变量x,y满足约束条件2xy4,则目标函数z3xy的取值范围是布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为4xy1,[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),333(A)[,6] (B)[,1] (C)[1,6] (D)[6,]222[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均(7)执行右面的程序框图,如果输入a=4,那么输出的n的值为气温不低于25.5℃的城市个数为____.(A)2 (B)3 (C)4 (D)5(15)若函数f(x)ax(a0,a1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)(14m)x在[0,)x(8)函数y2sin(0x9)的最大值与最小值之和为上是增函数,则a=____.63(16)如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆(A)23 (B)0 (C)-1 (D)13上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)(9)圆(x2)2y24与圆(x2)2(y1)29的位置关系为时,OP的坐标为____.三、解答题:本大题共6小题,共74分.(21)(本小题满分13分)(17)(本小题满分12分)x2y23如图,椭圆的离心率为,直线和所围成的矩形的面积为M:221(ab0)xaybABCD8.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanAtanC)tanAtanC.ab2(Ⅰ)求椭圆M的标准方程;(Ⅰ)求证:a,b,c成等比数列;(Ⅱ)设直线l:yxm(mR)与椭圆M有两个不同的交点P,Q,l与矩形ABCD(Ⅱ)若a1,c2,求△ABC的面积S.|PQ|有两个不同的交点S,T.求的最大值及取得最大值时m的值.|ST|(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;Ⅱ现袋中再放入一张标号为的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之()0和小于4的概率.(22)(本小题满分13分)lnxk已知函数f(x)(k为常数,e=2.71828…是自然对数的底数),曲线yf(x)在点(1,f(1))处的切线与exx轴平行.(19)(本小题满分12分)(Ⅰ)求k的值;如图,几何体EABCD是四棱锥,△ABD为正三角形,CBCD,ECBD.(Ⅱ)求f(x)的单调区间;(Ⅰ)求证:BEDE;2(Ⅲ)设g(x)xf(x),其中f(x)为f(x)的导函数.证明:对任意x0,g(x)1e.[来源:学科网ZXXK](Ⅱ)若∠BCD120,M为线段AE的中点,求证:DM∥平面BEC.(20)(本小题满分12分)已知等差数列{an}的前5项和为105,且a202a5.(Ⅰ)求数列{an}的通项公式;*2m(Ⅱ)对任意mN,将数列{an}中不大于7的项的个数记为bm.求数列{bm}的前m项和Sm.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐