绝密★启用并使用完毕前(A)(0,)(B)0,(C)(1,)(D)1,2010年普通高等学校招生全国统一考试(山东卷)(4)在空间,下列命题正确的是(A)平行直线的平行投影重合(B)平行于同一直线的两个平面文科数学(C)垂直于同一平面的两个平面平行(D)垂直于同一平面的两个平面平行本试卷分第I卷和第II卷两部分,共4页。满分150分。考试用时120分钟。考试结束后,将本试卷和答(5)设f(x)为定义在R上的函数。当x0时,f(x)2x2xb(b为常数),则f(1)题卡一并交回。注意事项:(A)-3(B)-1(C)1(D)31.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题(6)在某项体育比赛中一位同学被评委所打出的分数如下:卡和试卷规定的位置上。908990959394932.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净去掉一个最高分和一个最低分后,所剩数据的平均分值为和方差分别为后,再选涂其他答案标号。(A)92,2(B)92,2.83.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷(C)93,2(D)93,2.8上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。不按(7)设a是首项大于零的等比数列,则“aa”是“数列a是递增数列”的以上要求作答的答案无效。n12n4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。(A)充分而不必要条件(B)必要而不充分条件(C)充分而不必要条件(D)既不充分也不必要条件参考公式:(8)已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为1锥体的体积公式:VSh。其中S是锥体的底面积,h是锥体的高。312yx81x234,则使该生产厂家获取最大年利润的年产量为如果事伯A、B互斥,那么P(A+B)=P(A)+P(B);3(A)13万件(B)11万件(C)9万件(D)7万件如果事件A、B独立,那么P(AB)P(A)P(B)(9)已知抛物线y22px(p0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵第Ⅰ卷(共60分)坐标为2,则该抛物线的标准方程为(A)x1(B)x1一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要(C)x2(D)x2求的。(10)观察(x2)'2x,(x4)'4x2,(cosx)'sinx,由归纳推理可得:若定义在R上的函数f(x)满足.已知全集,集合2,则1URMxx40UMf(x)f(x),记g(x)为f(x)的导函数,则g(x)(A)x2x2(B)x2x2(A)f(x)(B)f(x)(C)g(x)(D)g(x)(C)xx2或x2(D)xx2或x2(11)函数y2xx2的图像大致是a2ibi(2)已知i(a,bR),其中i为虚数单位,则ab(A)-1(B)1(C)2(D)3f(x)log(3x1)(3)2的值域为()定义平面向量之间的一种运算“”如下:对任意的,,令.下已知等差数列满足:.的前项和为12a(m,n)b(p,q)abmqmpana37,a5a726annSn。面说法错误的是(Ⅰ)求an及Sn;(A)若a与b共线,则ab01()(Ⅱ)令b(nN),求数列a的前n项和T.Babban2nnan1(C)对任意的R,有(a)b=(ab)22(D)(ab)2(ab)2ab(19)(本小题满分12分)第Ⅱ卷(共90分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,二、填空题:本大题共4小题,每小题4分,共16分(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编(13)执行右图所示流程框图,若输入x4,则输出y的值为____________________.号为n,求n<m2的概率。xy(14)已知(x,yR),且满足1,则xy的最大值为34____________________.(15)在ABC中,角A、B、C所对的边分别为a、b、c.若a2,b2,sinBcosB2,,则角A的大小为(20)(本小题满分12分)____________________.在如图所示的几何体中,四边形ABCD是正方形,MA平面ABCD,PD∥MA,E、G、F分别为(16)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线MB、PB、PC的中点,且ADPD2MA.为l:yx1被该圆所截得的弦长为,则圆的标准方程(Ⅰ)求证:平面EFG平面PDC;____________22C三、解答题:本题共6小题,共74分。(Ⅱ)求三棱锥PMAB与四棱锥PABCD的体积之比.(17)(本小题满分12分)已知函数f(x)sin(x)cosxcos2x(>0)的最小正周期为.(Ⅰ)求的值.1(Ⅱ)将函数yf(x)的图像上各点的横坐标缩短到原来的2,纵坐标不变,得到函数yg(x)的图像,求函数g(x)在区间0,上的最小值。16(21)(本小题满分12分)1a已知函数f(x)1nxax1(aR).x(18)(本小题满分12分)(Ⅰ)当a1时,求曲线yf(x)在点(2,f(2))处的切线方程;1(Ⅱ)当a≤时,讨论f(x)的单调性.2(22)(本小题满分14分)x2y222如图,已知椭圆1(ab0)过点(1,),离心率为,左右焦点分别为FF.点P为a2b22212直线l:xy2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线PF1、PF2斜率分别为k1、k2.13(i)证明:2k1k2(ⅱ)问直线l上是否存在一点P,使直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOAkOBkOCkOD0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.
2010年高考真题数学【文】(山东卷)(原卷版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片