数学-2024年1月“七省联考”考前猜想卷(考试版)(A4版)

2024-01-15 · U1 上传 · 5页 · 675.1 K

2024年1月“七省联考考前猜想数学考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。4.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集,,,则(    )A. B. C. D.2.已知为复数单位,,则的模为(    )A. B.1 C.2 D.43.在三角形中,,,,则()A.10 B.12 C.-10 D.-124.,,则(    )A. B. C. D.5.在等比数列中,,是方程两根,若,则m的值为(    )A.3 B.9 C. D.6.中国国家大剧院是亚洲最大的剧院综合体,中国国家表演艺术的最高殿堂,中外文化交流的最大平台.大剧院的平面投影是椭圆,其长轴长度约为,短轴长度约为.若直线平行于长轴且的中心到的距离是,则被截得的线段长度约为(    )A. B. C. D.7.“”是“直线与圆相切”的()A.充分条件 B.必要条件C.既是充分条件又是必要条件 D.既不是充分条件也不是必要条件8.设,则(    )A. B.C. D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.近年来,我国人口老龄化持续加剧,为改善人口结构,保障国民经济可持续发展,国家出台了一系列政策,如2016年起实施全面两孩生育政策,2021年起实施三孩生育政策等.根据下方的统计图,下列结论正确的是(    )2010至2022年我国新生儿数量折线图A.2010至2022年每年新生儿数量的平均数高于1400万B.2010至2022年每年新生儿数量的第一四分位数低于1400万C.2015至2022年每年新生儿数量呈现先增加后下降的变化趋势D.2010至2016年每年新生儿数量的方差大于2016至2022年每年新生儿数量的方差10.已知函数的部分图象如图所示,则(    )A.的最小正周期为B.当时,的值域为C.将函数的图象向右平移个单位长度可得函数的图象D.将函数的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到的函数图象关于点对称11.如图,在棱长为1的正方体中,P为棱CC1上的动点(点P不与点C,C1重合),过点P作平面分别与棱BC,CD交于M,N两点,若CP=CM=CN,则下列说法正确的是()A.A1C⊥平面B.存在点P,使得AC1∥平面C.存在点P,使得点A1到平面的距离为D.用过点P,M,D1的平面去截正方体,得到的截面一定是梯形12.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线,为坐标原点,一束平行于轴的光线从点射入,经过上的点反射后,再经过上另一点反射后,沿直线射出,经过点,则()A. B.延长交直线于点,则,,三点共线C. D.若平分,则三.填空题:本题共4小题,每小题5分,共20分13.给定条件:①是奇函数;②.写出同时满足①②的一个函数的解析式:.14.已知的展开式中的常数项为240,则.15.为备战巴黎奥运会,某运动项目进行对内大比武,王燕、张策两位选手进行三轮两胜的比拼,若王燕获胜的概率为,且每轮比赛都分出胜负,则最终张策获胜的概率为16.四棱锥各顶点都在球心为的球面上,且平面,底面为矩形,,设分别是的中点,则平面截球所得截面的面积为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知数列满足,且点在直线上(1)求数列的通项公式;(2)数列前项和为,求能使对恒成立的()的最小值.18.(本小题满分12分)在锐角中,内角A,B,C的对边分别为a,b,c,且.(1)求证:;(2)若的角平分线交BC于,且,求面积的取值范围.19.(本小题满分12分)直播带货是一种直播和电商相结合的销售手段,目前已被广大消费者所接受.针对这种现状,某公司决定逐月加大直播带货的投入,直播带货金额稳步提升,以下是该公司2023年前5个月的带货金额:月份12345带货金额/万元350440580700880(1)计算变量,的相关系数(结果精确到0.01).(2)求变量,之间的线性回归方程,并据此预测2023年7月份该公司的直播带货金额.(3)该公司随机抽取55人进行问卷调查,得到如下不完整的列联表:参加过直播带货未参加过直播带货总计女性2530男性10总计请填写上表,并判断是否有90%的把握认为参加直播带货与性别有关.参考数据:,,,,.参考公式:相关系数,线性回归方程的斜率,截距.附:,其中.0.150.100.050.0252.0722.7063.8415.02420.(本小题满分12分)如图,三棱柱的底面是等边三角形,,,D,E,F分别为,,的中点.(1)在线段上找一点,使平面,并说明理由;(2)若平面平面,求平面与平面所成二面角的正弦值.21.(本小题满分12分)已知直线与抛物线相切于点A,动直线与抛物线C交于不同两点M,N(M,N异于点A),且以MN为直径的圆过点A.(1)求抛物线C的方程及点A的坐标;(2)当点A到直线的距离最大时,求直线的方程.22(本小题满分12分)已知函数,.(1)若,讨论的单调性;(2)若当时,恒成立,求的取值范围.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐