2014年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)计算:(﹣3)+4的结果是( )A.﹣7 B.﹣1 C.1 D.72.(4分)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )A.5~10元 B.10~15元 C.15~20元 D.20~25元3.(4分)如图所示的支架是由两个长方体构成的组合体,则它的主视图是( )A. B. C. D.4.(4分)要使分式有意义,则x的取值应满足( )A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣15.(4分)计算:m6•m3的结果( )A.m18 B.m9 C.m3 D.m26.(4分)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是( )星期一二三四五六日最高气温(℃)22242325242221A.22℃ B.23℃ C.24℃ D.25℃7.(4分)一次函数y=2x+4的图象与y轴交点的坐标是( )A.(0,﹣4) B.(0,4) C.(2,0) D.(﹣2,0)8.(4分)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是( )A.2∠C B.4∠B C.4∠A D.∠B+∠C9.(4分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是( )A. B. C. D.10.(4分)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是( )A.一直增大 B.一直减小 C.先增大后减小 D.先减小后增大二、填空题(共6小题,每小题5分,满分30分)11.(5分)因式分解:a2+3a= .12.(5分)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 度.13.(5分)不等式3x﹣2>4的解是 .14.(5分)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是 .15.(5分)请举反例说明命题“对于任意实数x,x2+5x+5的值总是正数”是假命题,你举的反例是x= (写出一个x的值即可).16.(5分)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AD或BC所在的直线与⊙O相切时,AB的长是 .三、解答题(共8小题,满分80分)17.(10分)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a).18.(8分)如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.19.(8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.20.(10分)如图,在等边△ABC中,点D,E分別在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.22.(8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结 ∵S五边形ACBED= 又∵S五边形ACBED= ∴ ∴a2+b2=c2.23.(12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数未答题数A1901B1721C1523D1712E//7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).24.(14分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中,设▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.2014年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.【分析】根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.【解答】解:原式=+(4﹣3)=1.故选:C.【点评】本题考查了有理数的加法,先确定和的符号,再进行绝对值的运算.2.【分析】根据图形所给出的数据直接找出捐款人数最多的一组即可.【解答】解:根据图形所给出的数据可得:捐款额为15~20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元.故选:C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从几何体的正面看可得此几何体的主视图是,故选:D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.【解答】解:m6•m3=m9.故选:B.【点评】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.6.【分析】将数据从小到大排列,根据中位数的定义求解即可.【解答】解:将数据从小到大排列为:21,22,22,23,24,24,25,中位数是23.故选:B.【点评】本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.【分析】在解析式中令x=0,即可求得与y轴的交点的纵坐标.【解答】解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选:B.【点评】本题考查了一次函数图象上点的坐标特征,是一个基础题.8.【分析】根据圆周角定理,可得∠AOB=2∠C.【解答】解:如图,由圆周角定理可得:∠AOB=2∠C.故选:A.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.9.【分析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.【解答】解:设男生有x人,女生有y人,根据题意得,.故选:D.【点评】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.【分析】设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=AB•AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.【解答】解:设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=AB•AD=ab,又∵a+b为定值时,当a=b时,ab最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选:C.【点评】本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度.根据题意得出k=AB•AD=ab是解题的关键.二、填空题(共6小题,每小题5分,满分30分)11.【分析】直接提取公因式a,进而得出答案.【解答】解:a2+3a=a(a+3).故答案为:a(a+3).【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.12.【分析】根据平行线的性质求出∠C,根据三角形外角性质求出即可.【解答】解:∵AB∥CD,∠1=45°,∴∠C=∠1=45°,∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°,故答案为:80.【点评】本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出∠C的度数和得出∠3=∠2+∠C.13.【分析】先移项,再合并同类项,把x的系数化为1即可.【解答】解:移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.故答案为:x>2.【点评】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.14.【分析】根据锐角三角函数的定义(tanA=)求出即可.【解答】解:tanA==,故答案为:.【点评】本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.15.【分析】先进行配方得到x2+5x+5=x2+5x+﹣=(x+)2﹣,当x=﹣时,则有x2+5x+5=﹣<0.【解答】解:x2+5x+5=x2+5x+﹣=(x+)2﹣,当x=﹣时,x2+5x+5=﹣<0,∴是假命题.故答案为:﹣.【点评】本题考查了命题与定理的知识,在判断一个
2014年浙江省温州市中考数学试卷
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片