2008年陕西省中考数学试题及答案

2023-10-31 · U1 上传 · 18页 · 443.1 K

2008年陕西省中考数学试卷 一、选择题(共10小题,每小题3分,满分30分)1.(3分)零上13℃记作+13℃,零下2℃可记作( )A.2 B.﹣2 C.2℃ D.﹣2℃2.(3分)(2008•陕西)如图,这个几何体的主视图是( )A. B. C. D.3.(3分)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( )A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形4.(3分)(2008•陕西)把不等式组的解集表示在数轴上,正确的是( )A. B. C. D.5.(3分)(2008•陕西)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万.这组数据的众数和中位数分别是( )A.20万、15万 B.10万、20万 C.10万、15万 D.20万、10万6.(3分)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CD B.AD=BC C.AC=BD D.AB=BC7.(3分)(2008•陕西)方程(x﹣2)2=9的解是( )A.x1=5,x2=﹣1 B.x1=﹣5,x2=1 C.x1=11,x2=﹣7 D.x1=﹣11,x2=78.(3分)如图,直线AB对应的函数表达式是( )A.y=﹣x+3 B.y=x+3 C.y=﹣x+3 D.y=x+39.(3分)(2008•陕西)如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为( )A.2 B.2 C. D.210.(3分)(2008•陕西)已知二次函数y=ax2+bx+c(其中a>0,b>0,c<0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x轴的交点有一个在y轴的右侧.以上说法正确的个数为( )A.0 B.1 C.2 D.3 二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2008•陕西)若∠α=43°,则∠α的余角的大小是 度.12.(3分)(2008•陕西)计算:(2a2)3•a4= .13.(3分)(2008•陕西)一个反比例函数的图象经过点P(﹣1,5),则这个函数的表达式是 .14.(3分)(2008•陕西)如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为 .15.(3分)(2008•陕西)搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.16.(3分)(2008•陕西)如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA,AB,BC为边向梯形外作正方形,其面积分别为S1,S2,S3,则S1,S2,S3之间的关系是 . 三、解答题(共9小题,满分72分)17.(6分)(2008•陕西)先化简,再求值:,其中a=﹣2,b=.18.(6分)(2008•陕西)已知:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:BC=DE.19.(7分)(2008•陕西)下面图①,图②是某校调查部分学生是否知道母亲生日情况的扇形和条形统计图:根据上图信息,解答下列问题:(1)求本次被调查学生的人数,并补全条形统计图;(2)若全校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日;(3)通过对以上数据的分析,你有何感想.(用一句话回答)20.(7分)(2008•陕西)阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是: ;(2)请在图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.21.(8分)(2008•陕西)如图,桌面上放置了红,黄,蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏.(1)随机翻一个杯子,求翻到黄色杯子的概率;(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.22.(8分)(2008•陕西)生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2000棵,种植A,B两种树苗的相关信息如表.品种项目单价(元/棵)成活率劳务费(元/棵)A1595%3B2099%4设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造成这片林的总费用需多少元?23.(8分)(2008•陕西)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆O与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求AD的长.24.(10分)(2008•陕西)如图,矩形ABCD的长,宽分别为和1,且OB=1,点E(,2),连接AE,ED.(1)求经过A,E,D三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A′E′D′C′B′;(3)经过A′,E′,D′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.25.(12分)(2008•陕西)某县社会主义新农村建设办公室,为了解决该县甲,乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短? 2008年陕西省中考数学试卷参考答案试题解析 一、选择题(共10小题,每小题3分,满分30分)1.(3分)【考点】正数和负数.菁优网版权所有【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,由零上13℃记作+13℃,则零下2℃可记作﹣2℃.故选D.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)【考点】简单组合体的三视图.菁优网版权所有【分析】找到从正面看所得到的图形即可.【解答】解:从正面看可得上部为圆锥,下部为圆柱,中间的接合面在主视图中应为一条线,故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)【考点】三角形内角和定理.菁优网版权所有【分析】已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型.【解答】解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.故选:D.【点评】本题考查三角形的分类,这个三角形最大角为180°×>90°.本题也可以利用方程思想来解答,即2x+3x+7x=180,解得x=15,所以最大角为7×15°=105°.4.(3分)【考点】解一元一次不等式组;在数轴上表示不等式的解集.菁优网版权所有【分析】分别求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:解不等式①,得x<2,解不等式②,得x>﹣1,所以不等式组的解集是﹣1<x<2,故选C.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.5.(3分)【考点】众数;中位数.菁优网版权所有【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:10万出现次数最多为3次,10万为众数;从小到大排列的第4,5两个数分别为10万,20万,其平均值即中位数为15万.故选C.【点评】本题考查数据的众数与中位数的判断.解题时要细心.6.(3分)【考点】矩形的判定.菁优网版权所有【分析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【解答】解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:C.【点评】此题主要考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.7.(3分)【考点】解一元二次方程-直接开平方法.菁优网版权所有【分析】根据平方根的定义首先开方,求得x﹣2的值,进而求得x的值.【解答】解:开方得,x﹣2=±3解得x1=5,x2=﹣1.故选A.【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点. 8.(3分)【考点】待定系数法求一次函数解析式.菁优网版权所有【分析】把点A(0,3),B(2,0)代入直线AB的方程,用待定系数法求出函数关系式,从而得出结果.【解答】解:设直线AB对应的函数表达式是y=kx+b,把A(0,3),B(2,0)代入,得,解得,故直线AB对应的函数表达式是y=﹣x+3.故选A.【点评】本题要注意利用一次函数的特点,来列出方程组,求出未知数的值从而求得其解析式. 9.(3分)【考点】切线的性质;勾股定理;圆周角定理.菁优网版权所有【分析】作辅助线,连接OC与OE.根据一条弧所对的圆周角等于它所对的圆心角的一半,可知∠EOC的度数;再根据切线的性质定理,圆的切线垂直于经过切点的半径,可知OC⊥AB;又EF∥AB,可知OC⊥EF,最后由勾股定理可将EF的长求出.【解答】解:连接OE和OC,且OC与EF的交点为M.∵∠EDC=30°,∴∠COE=60°.∵AB与⊙O相切,∴OC⊥AB,又∵EF∥AB,∴OC⊥EF,即△EOM为直角三角形.在Rt△EOM中,EM=sin60°×OE=×2=,∵EF=2EM,∴EF=.故选B.【点评】本题主要考查切线的性质及直角三角形的勾股定理.10.(3分)【考点】二次函数图象与系数的关系.菁优网版权所有【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵a>0,故①正确;∵顶点横坐标﹣<0,故顶点不在第四象限,②错误,∵a>0,∴抛物线开口向

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐