2022年辽宁省沈阳市中考数学真题(解析版)

2023-10-31 · U1 上传 · 30页 · 991.2 K

沈阳市2022年初中学业水平考试数学试题试题满分120分,考试时间120分钟.注意事项:1.答题前,考生须用0.5mm黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号;2.考生须在答题卡上作答,不能在本试题卷上作答,答在本试题卷上无效;3.考试结束,将本试题卷和答题卡一并交回;4.本试题卷包括八道大题,25道小题,共6页.如缺页、印刷不清,考生须声明.一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.计算正确的是()A.2 B. C.8 D.【答案】A【解析】【分析】根据有理数的加法运算即可求解.【详解】解:.故选:A.【点睛】本题考查了有理数的加法,掌握有理数的加法法则是解题的关键.2.如图是由4个相同的小立方块搭成的几何体,这个几何体的主视图是()A. B. C. D.【答案】D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看易得上面第一层有1个正方形,第二层左边和右边都有一个正方形,如图所示: 故选:D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.下列计算结果正确的是()A B. C. D.【答案】D【解析】【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A.,故此选项计算错误,不符合题意;B.,故此选项计算错误,不符合题意;C.,故此选项计算错误,不符合题意;D.,故此选项计算正确,符合题意;故选:D.【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;与都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.4.在平面直角坐标系中,点关于y轴对称的点的坐标是()A. B. C. D.【答案】B【解析】【分析】根据“关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数”即可解答.【详解】解:点A(2,3)关于y轴对称的点的坐标是(-2,3).故选B.【点睛】本题考查了关于坐标轴对称的点的坐标特征,对称点的坐标规律:①关于x轴对称的点,横坐标相同,纵坐标互为相反数;②关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.调查某少年足球队全体队员的年龄,得到数据结果如下表:年龄/岁1112131415人数34722则该足球队队员年龄的众数是()A.15岁 B.14岁 C.13岁 D.7人【答案】C【解析】【分析】根据众数的定义即一组数据中出现次数最多的数据,即可得出答案.【详解】解:∵年龄是13岁的人数最多,有7个人,∴这些队员年龄的众数是13;故选:C.【点睛】本题考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数据.6.不等式的解集在数轴上表示正确的是()A. B. C. D.【答案】B【解析】【分析】先解不等式,将不等式的解集表示在数轴上即可.【详解】解:移项合并得:,系数化1得:,表示在数轴上为∶ 故选:B.【点睛】本题考查一元一次不等式的解法,并把解集表示在数轴上,正确解出不等式是解答本题的关键.7.如图,在中,,点D、E分别是直角边AC、BC的中点,连接DE,则度数是() A.70° B.60° C.30° D.20°【答案】B【解析】【分析】因为点D、E分别是直角边AC、BC的中点,所以DE是的中位线,三角形的中位线平行于第三边,进而得到,求出的度数,即为的度数.【详解】解:∵点D、E分别是直角边AC、BC的中点,∴DE是的中位线,∴,∴,∵,,∴,∴,故选:B.【点睛】本题考查三角形中位线的性质以及三角形内角和,由三角形中位线定义,找到平行线是解答本题的关键.8.在平面直角坐标系中,一次函数的图象是()A. B.C. D.【答案】A【解析】【分析】根据一次函数的图象与性质即可得.【详解】解:一次函数的一次项系数为−1<0,常数项为,函数图象经过一、二、四象限故选:A.【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题关键.9.下列说法正确的是()A.了解一批灯泡的使用寿命,应采用抽样调查的方式B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C.若甲、乙两组数据的平均数相同,,,则乙组数据较稳定D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【答案】A【解析】【分析】根据全面调查和抽样调查的意义、概率的意义、方差的意义、事件可能性的大小分别进行判断即可.【详解】解:A.要了解一批灯泡的使用寿命,采用普查的方式不合适,破坏性较强,应采用抽样调查,故此选项正确,符合题意;B.如果某彩票的中奖概率是1%,那么一次购买100张这种彩票不一定一定会中奖,故选项错误,不符合题意;C.若甲、乙两组数据的平均数相同,,,则<,则甲组数据较稳定,故选项错误,不符合题意;D.“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,故选项错误,不符合题意.故选:A.【点睛】此题主要考查了全面调查和抽样调查的意义、概率的意义、方差的意义、事件可能性的大小,关键是熟练掌握各知识点.10.如图,一条河两岸互相平行,为测得此河的宽度PT(PT与河岸PQ垂直),测P、Q两点距离为m米,,则河宽PT的长度是()A. B. C. D.【答案】C【解析】【分析】结合图形利用正切函数求解即可.【详解】解:根据题意可得:,∴,故选C.【点睛】题目主要考查解直角三角形的实际应用,理解题意,利用正切函数解直角三角形是解题关键.二、填空题(每小题3分,共18分)11.分解因式:______.【答案】【解析】【分析】先提取公因式,然后再利用完全平方公式进行因式分解即可.【详解】解:=;故答案为:.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.12.二元一次方程组的解是______.【答案】##【解析】【分析】利用代入消元法进行求解方程组的解即可.【详解】解:把②代入①得:,解得:,把代入②得:;∴原方程组的解为;故答案为.【点睛】本题主要考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是解题的关键.13.化简:______.【答案】##【解析】【分析】根据分式的混合运算可直接进行求解.【详解】解:原式=;故答案为.【点睛】本题主要考查分式的运算,熟练掌握分式的加减乘除运算是解题的关键.14.如图,边长为4的正方形ABCD内接于,则的长是________(结果保留)【答案】【解析】【分析】连接OA、OB,可证∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【详解】解:连接OA、OB.∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD=4,AO=BO,∴,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:AO2+BO2=2AO2=42=16,解得:AO=2,∴的长=,故答案为:.【点睛】本题考查了弧长公式和正方形的性质,能求出∠AOB的度数和OA的长是解此题的关键.15.如图四边形ABCD是平行四边形,CD在x轴上,点B在y轴上,反比例函数的图象经过第一象限点A,且平行四边形ABCD的面积为6,则______. 【答案】6【解析】【分析】过点A作AE⊥CD于点E,然后平行四边形的性质可知△AED≌△BOC,进而可得矩形ABOE的面积与平行四边形ABCD的面积相等,最后根据反比例函数k的几何意义可求解.【详解】解:过点A作AE⊥CD于点E,如图所示: ∴,∵四边形ABCD是平行四边形,∴,∴,∴△AED≌△BOC(AAS),∵平行四边形ABCD的面积为6,∴,∴;故答案为6.【点睛】本题主要考查平行四边形的性质及反比例函数k的几何意义,熟练掌握平行四边形的性质及反比例函数k的几何意义是解题的关键.16.如图,将矩形纸片ABCD折叠,折痕为MN,点M,N分别在边AD,BC上,点C,D的对应点分别在E,F且点F在矩形内部,MF的延长线交BC与点G,EF交边BC于点H.,,当点H为GN三等分点时,MD的长为______. 【答案】或4【解析】【分析】由折叠得,∠DMN=∠GMN,EF=CD==4,CN=EN=2,∠EFM=∠D=90°,证明得,再分两种情况讨论求解即可.【详解】解:∵四边形ABCD是矩形,∴AD//BC,CD=AB=4,∠D=∠C=90°,∴∠DMN=∠GNM,由折叠得,∠DMN=∠GMN,EF=CD==4,CN=EN=2,∠EFM=∠D=90°,∴∠GMN=∠GNM,∠GFH=∠NEH,∴GM=GN,又∠GHE=∠NHE,∴,∴,∵点H是GN的三等分点,则有两种情况:①若时,则有:∴EH=,GF=2NE=4,由勾股定理得,,∴GH=2NH=∴GM=GN=GH+NH=,∴MD=MF=GM-GF=;②若时,则有:∴EH=,GF=NE=1,由勾股定理得,,∴GH=NH=∴GM=GN=GH+NH=5;∴MD=MF=GM-GF=综上,MD的值为或4.【点睛】本题主要考查了矩形的性质,折叠的性质,等腰三角形的判定与性质以及相似三角形的判定与性质等知识,进行分类讨论是解答本题的关键.三、解答题:17.计算:.【答案】【解析】【分析】根据二次根式的性质,特殊角的三角函数值,负整数指数幂,化简绝对值进行计算即可求解.【详解】解:原式=.【点睛】本题考查了实数的混合运算,掌握二次根式的性质,特殊角的三角函数值,负整数指数幂,化简绝对值是解题的关键.18.为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是________;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.【答案】(1)(2)【解析】【分析】(1)直接由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中两张卡片上的数字是2和3的结果有2种,再由概率公式求解即可.【小问1详解】解:随机抽取一张卡片,卡片上的数字是4的概率为,故答案为:;【小问2详解】解:画树状图如下:共有12种等可能的结果,其中两张卡片上的数字是2和3的结果有2种,∴两张卡片上的数字是2和3的概率为.【点睛】此题考查的是用树状图或列表法求概率.树状图或列表法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.熟练掌握树状图或列表法是解决这类题的关键.19.如图,在中,AD是的角平分线,分别以点A,D为圆心,大于的长为半径作弧,两弧交于点M,N,作直线MN,分别交AB,AD,AC于点E,O,F,连接DE,DF.(1)由作图可知,直线MN是线段AD的______.(2)求证:四边形AEDF是菱形.【答案】(1)垂直平分线(2)见详解【解析】【分析】(1)根据线段垂直平分线的尺规作图可直接得出答案;(2)由题意易得,然后可证,则有OF=OE,进而问题可求证.【小问1详解】解:由题意得:直线MN是线段AD的垂直平分线;故答案为:垂直平分线;【小问2详解】证明:∵直线MN是线段AD的垂直平分线,∴,∵AD是的角平分线,∴,∵AO=AO,∴(ASA),∴OF=OE,∵AO=DO,∴四边形AEDF是平行四边形,∵,∴四边形AEDF是菱形.【点睛】本题主要考查线段垂直平分线的尺规作图、全等三角形的性质与判定及菱形的判定,熟练掌握线段垂直平分线的尺规作图、全等三角形的性质与判定及菱形的判定是解题的关键.20.某校积极落实“双减”政策,将要开设拓展课程,为让学生可以根据自己的兴趣爱好选择最喜欢的课程,进行问卷调查,问卷设置以下四种选项:A(综合模型)、B(摄影艺术)、C(音乐鉴赏)、D(劳动实践),随机抽取

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐