2018年辽宁省盘锦市数学中考试卷(空白卷)

2023-10-31 · U1 上传 · 6页 · 396 K

2018年辽宁省盘锦市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上.每小题3分,共30分)1.﹣2的绝对值是()A.2 B. C. D.2.下列图形中,是中心对称图形的是()A. B. C. D.3.下列运算正确的是( )A.3x+4y=7xy B.(﹣a)3•a2=a5 C.(x3y)5=x8y5 D.m10÷m7=m34.某微生物直径为0.000005035m,用科学记数法表示该数为( )A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣55.要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是( )A.甲 B.乙 C.丙 D.无法确定6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为( )A1.70,1.75 B.1.70,1.70 C.1.65,1.75 D.1.65,1.707.如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为( )A.15° B.25° C.30° D.50°8.如图,一段公路的转弯处是一段圆弧,则的展直长度为( )A.3π B.6π C.9π D.12π9.如图,已知在▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列选项中的结论错误的是( )A.FA:FB=1:2 B.AE:BC=1:2C.BE:CF=1:2 D.S△ABE:S△FBC=1:410.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形OABC的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN,则下列选项中的结论错误的是( )A.△ONC≌△OAMB.四边形DAMN与△OMN面积相等C.ON=MND.若∠MON=45°,MN=2,则点C的坐标为(0,+1)二、填空题(每小题3分,共24分)11.因式分解:x3-x=______________.12.计算:﹣=__.13.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是__.14.若式子有意义,则x的取值范围是__.15.不等式组解集是__.16.如图①,在矩形ABCD中,动点P从A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB面积为y,如果y与x的函数图象如图②所示,则矩形ABCD的面积为__.17.如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是__.(结果保留π)18.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.三、解答题19.先化简,再求值:(1﹣)÷,其中a=2+.20.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了 名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于 度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为 人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?21.两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.22.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?23.如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC相交于点F,∠B=∠BAE=30°.(1)求证:BC是⊙O的切线;(2)若AC=3,求⊙O的半径r;(3)在(1)的条件下,判断以A、O、E、F为顶点的四边形为哪种特殊四边形,并说明理由.24.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?25.如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.26.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐