2021年湖南省株洲市中考数学真题 (原卷版)

2023-10-31 · U1 上传 · 8页 · 186.5 K

2021年湖南省株洲市中考数学试卷一、选择题(本大题共10小题,每小题有且只有一个正确答案,每小题4分,共40分)1.若a的倒数为2,则a=( )A. B.2 C.﹣ D.﹣22.方程﹣1=2的解是( )A.x=2 B.x=3 C.x=5 D.x=63.如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=( )A.38° B.48° C.58° D.66°4.某月1日﹣10日,甲、乙两人的手机“微信运动”的步数统计图如图所示,则下列错误的结论是( )A.1日﹣10日,甲的步数逐天增加 B.1日﹣6日,乙的步数逐天减少 C.第9日,甲、乙两人的步数正好相等 D.第11日,甲的步数不一定比乙的步数多5.计算:=( )A.﹣2 B.﹣2 C.﹣ D.26.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为( )A.1.8升 B.16升 C.18升 D.50升7.不等式组的解集为( )A.x<1 B.x≤2 C.1<x≤2 D.无解8.如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠FAI=( )A.10° B.12° C.14° D.15°9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,点P在x轴的正半轴上,且OP=1,设M=ac(a+b+c),则M的取值范围为( )A.M<﹣1 B.﹣1<M<0 C.M<0 D.M>010.某限高曲臂道路闸口如图所示,AB垂直地面l1于点A,BE与水平线l2的夹角为α(0°≤α≤90°),EF∥l1∥l2,若AB=1.4米,BE=2米,车辆的高度为h(单位:米),不考虑闸口与车辆的宽度:①当α=90°时,h小于3.3米的车辆均可以通过该闸口;②当α=45°时,h等于2.9米的车辆不可以通过该闸口;③当α=60°时,h等于3.1米的车辆不可以通过该闸口.则上述说法正确的个数为( )A.0个 B.1个 C.2个 D.3个二、填空题(本大题共8小题,每小题4分,共32分)11.计算:(2a)2•a3= .12.因式分解:6x2﹣4xy= .13.据报道,2021年全国高考报名人数为1078万,将1078万用科学记数法表示为1.078×10n,则n= .14.抛掷一枚质地均匀的硬币两次,则两次都是“正面朝上”的概率是 .15.如图所示,线段BC为等腰△ABC的底边,矩形ADBE的对角线AB与DE交于点O,若OD=2,则AC= .16.中药是以我国传统医药理论为指导,经过采集、炮制、制剂而得到的药物.在一个时间段,某中药房的黄芪、焦山楂、当归三种中药的销售单价和销售额情况如表:中药黄芪焦山楂当归销售单价(单位:元/千克)806090销售额(单位:元)120120360则在这个时间段,该中药房的这三种中药的平均销售量为 千克.17.点A(x1,y1)、B(x1+1,y2)是反比例函数y=图象上的两点,满足:当x1>0时,均有y1<y2,则k的取值范围是 .18.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(“”为“蜨”,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的“樣”和“隻”为“样”和“只”).图②为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(“一樣二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=24°,则∠DCP= 度.三、解答题(本大题共8小题,共78分)19.(6分)计算:|﹣2|+sin60°﹣2﹣1.20.(8分)先化简,再求值:,其中x=﹣2.21.(8分)如图所示,在矩形ABCD中,点E在线段CD上,点F在线段AB的延长线上,连接EF交线段BC于点G,连接BD,若DE=BF=2.(1)求证:四边形BFED是平行四边形;(2)若tan∠ABD=,求线段BG的长度.22.(10分)将一物体(视为边长为米的正方形ABCD)从地面PQ上挪到货车车厢内.如图所示,刚开始点B与斜面EF上的点E重合,先将该物体绕点B(E)按逆时针方向旋转至正方形A1BC1D1的位置,再将其沿EF方向平移至正方形A2B2C2D2的位置(此时点B2与点G重合),最后将物体移到车厢平台面MG上.已知MG∥PQ,∠FBP=30°,过点F作FH⊥MG于点H,FH=米,EF=4米.(1)求线段FG的长度;(2)求在此过程中点A运动至点A2所经过的路程.23.(10分)目前,国际上常用身体质量指数“BMI”作为衡量人体健康状况的一个指标,其计算公式:BMI=(G表示体重,单位:千克;h表示身高,单位:米).已知某区域成人的BMI数值标准为:BMI<16为瘦弱(不健康);16≤BMI<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖;BMI≥28为肥胖(不健康).某研究人员从该区域的一体检中心随机抽取55名成人的体重、身高数据组成一个样本,计算每名成人的BMI数值后统计:(男性身体属性与人数统计表)身体属性人数瘦弱2偏瘦2正常1偏胖9肥胖m(1)求这个样本中身体属性为“正常”的人数;(2)某女性的体重为51.2千克,身高为1.6米,求该女性的BMI数值;(3)当m≥3且n≥2(m、n为正整数)时,求这个样本中身体属性为“不健康”的男性人数与身体属性为“不健康”的女性人数的比值.24.(10分)如图所示,在平面直角坐标系xOy中,一次函数y=2x的图象l与函数y=(k>0,x>0)的图象(记为Г)交于点A,过点A作AB⊥y轴于点B,且AB=1,点C在线段OB上(不含端点),且OC=t,过点C作直线l1∥x轴,交l于点D,交图象Г于点E.(1)求k的值,并且用含t的式子表示点D的横坐标;(2)连接OE、BE、AE,记△OBE、△ADE的面积分别为S1、S2,设U=S1﹣S2,求U的最大值.25.(13分)如图所示,AB是⊙O的直径,点C、D是⊙O上不同的两点,直线BD交线段OC于点E、交过点C的直线CF于点F,若OC=3CE,且9(EF2﹣CF2)=OC2.(1)求证:直线CF是⊙O的切线;(2)连接OD、AD、AC、DC,若∠COD=2∠BOC.①求证:△ACD∽△OBE;②过点E作EG∥AB,交线段AC于点G,点M为线段AC的中点,若AD=4,求线段MG的长度.26.(13分)已知二次函数y=ax2+bx+c(a>0).(1)若a=,b=c=﹣2,求方程ax2+bx+c=0的根的判别式的值;(2)如图所示,该二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1<0<x2,与y轴的负半轴交于点C,点D在线段OC上,连接AC、BD,满足∠ACO=∠ABD,﹣+c=x1.①求证:△AOC≌△DOB;②连接BC,过点D作DE⊥BC于点E,点F(0,x1﹣x2)在y轴的负半轴上,连接AF,且∠ACO=∠CAF+∠CBD,求的值.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐