湖北省武汉市2020年中考数学真题一、选择题1.的相反数是()A. B.2 C. D.2.式子在实数范围内有意义,则的取值范围是()A. B. C. D.3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球标号之和等于1 B.两个小球的标号之和等于6C.两个小球的标号之和大于1 D.两个小球的标号之和大于64.现实世界中,对称现象无处不在,中国的方块字中有些也只有对称性,下列汉字是轴对称图形的是()A B. C. D.5.下图是由4个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.6.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选于的概率是()A. B. C. D.7.若点,在反比例函数的图象上,且,则的取值范围是()A. B. C. D.或8.一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始内只进水不出水,从第到第内既进水又出水,从第开始只出水不进水,容器内水量(单位:)与时间(单位:)之间的关系如图所示,则图中的值是()A.32 B.34 C.36 D.389.如图,在半径为3的⊙O中,是直径,是弦,是的中点,与交于点.若是的中点,则的长是()A B. C. D.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“”形纸片,图(2)是一张由6个小正方形组成的方格纸片.把“”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的方格纸片,将“”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有种不同放置方法,则的值是()A.160 B.128 C.80 D.48二、填空题11.计算的结果是_______.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:),分别为:4,3,3,5,5,6.这组数据的中位数是________.13.计算的结果是________.14.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,是平行四边形的对角线,点在上,,,则的大小是________.15.抛物线(,,为常数,)经过,两点,下列四个结论:①一元二次方程的根为,;②若点,在该抛物线上,则;③对于任意实数,总有;④对于的每一个确定值,若一元二次方程(为常数,)的根为整数,则的值只有两个.其中正确的结论是________(填写序号).16.如图,折叠矩形纸片,使点落在边的点处,为折痕,,.设的长为,用含有的式子表示四边形的面积是________.三、解答题17.计算:.18.如图,直线分别与直线,交于点,.平分,平分,且∥.求证:∥.19.为改善民生;提高城市活力,某市有序推行“地摊经济”政策.某社区志愿者随机抽取该社区部分居民,按四个类别:表示“非常支持”,表示“支持”,表示“不关心”,表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如下两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了________名居民进行调查统计,扇形统计图中,类所对应的扇形圆心角的大小是________;(2)将条形统计图补充完整;(2)该社区共有2000名居民,估计该社区表示“支持”的类居民大约有多少人?20.在的网格中建立如图的平面直角坐标系,四边形的顶点坐标分别为,,,.仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段绕点逆时针旋转,画出对应线段;(2)在线段上画点,使(保留画图过程的痕迹);(3)连接,画点关于直线对称点,并简要说明画法.21.如图,在中,,以为直径的⊙O交于点,与过点的切线互相垂直,垂足为.(1)求证:平分;(2)若,求的值.22.某公司分别在,两城生产同种产品,共100件.城生产品的总成本(万元)与产品数量(件)之间具有函数关系,当时,;当时,.城生产产品的每件成本为70万元.(1)求,的值;(2)当,两城生产这批产品的总成本的和最少时,求,两城各生产多少件?(3)从城把该产品运往,两地费用分别为万元/件和3万元/件;从城把该产品运往,两地的费用分别为1万元/件和2万元/件,地需要90件,地需要10件,在(2)的条件下,直接写出,两城总运费的和的最小值(用含有的式子表示).23.问题背景:如图(1),已知,求证:;尝试应用:如图(2),在和中,,,与相交于点.点在边上,,求的值;拓展创新:如图(3),是内一点,,,,,直接写出的长.24.将抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线.(1)直接写出抛物线,的解析式;(2)如图(1),点在抛物线对称轴右侧上,点在对称轴上,是以为斜边的等腰直角三角形,求点的坐标;(3)如图(2),直线(,为常数)与抛物线交于,两点,为线段的中点;直线与抛物线交于,两点,为线段的中点.求证:直线经过一个定点.湖北省武汉市2020年中考数学真题一、选择题1.的相反数是()A. B.2 C. D.【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.2.式子在实数范围内有意义,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】由二次根式有意义的条件列不等式可得答案.【详解】解:由式子在实数范围内有意义,故选D.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题的关键.3.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1 B.两个小球的标号之和等于6C.两个小球的标号之和大于1 D.两个小球的标号之和大于6【答案】B【解析】【分析】随机事件是指在某个条件下有可能发生有可能不会发生的事件,根据此定义即可求解.【详解】解:从两个口袋中各摸一个球,其标号之和最大为6,最小为2,选项A:“两个小球的标号之和等于1”为不可能事件,故选项A错误;选项B:“两个小球的标号之和等于6”为随机事件,故选项B正确;选项C:“两个小球的标号之和大于1”为必然事件,故选项C错误;选项D:“两个小球的标号之和大于6”为不可能事件,故选项D错误.故选:B.【点睛】本题考查了随机事件、不可能事件、必然事件的概念,熟练掌握各事件的定义是解决本题的关键.4.现实世界中,对称现象无处不在,中国的方块字中有些也只有对称性,下列汉字是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的定义“在平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形”逐项判断即可得.【详解】A、不是轴对称图形,此项不符题意B、不是轴对称图形,此项不符题意C、是轴对称图形,此项符合题意D、不是轴对称图形,此项不符题意故选:C.【点睛】本题考查了轴对称图形的定义,熟记定义是解题关键.5.下图是由4个相同的正方体组成的立体图形,它的左视图是()A. B. C. D.【答案】A【解析】【分析】根据左视图的定义即可求解.【详解】根据图形可知左视图为故选A.【点睛】此题主要考查三视图,解题的关键是熟知左视图的定义.6.某班从甲、乙、丙、丁四位选中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选于的概率是()A. B. C. D.【答案】C【解析】【分析】画出树状图展示所有12种等可能的结果数,再根据概率公式即可求解.【详解】画树状图为:∴P(选中甲、乙两位)=故选C.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.7.若点,在反比例函数的图象上,且,则的取值范围是()A B. C. D.或【答案】B【解析】【分析】由反比例函数,可知图象经过第二、四象限,在每个象限内,y随x的增大而增大,由此分三种情况①若点A、点B在同在第二或第四象限;②若点A在第二象限且点B在第四象限;③若点A在第四象限且点B在第二象限讨论即可.【详解】解:∵反比例函数,∴图象经过第二、四象限,在每个象限内,y随x的增大而增大,①若点A、点B同在第二或第四象限,∵,∴a-1>a+1,此不等式无解;②若点A在第二象限且点B在第四象限,∵,∴,解得:;③由y1>y2,可知点A在第四象限且点B在第二象限这种情况不可能.综上,的取值范围是.故选:B.【点睛】本题考查反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键,注意要分情况讨论,不要遗漏.8.一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始内只进水不出水,从第到第内既进水又出水,从第开始只出水不进水,容器内水量(单位:)与时间(单位:)之间的关系如图所示,则图中的值是()A.32 B.34 C.36 D.38【答案】C【解析】【分析】设每分钟的进水量为,出水量为,先根据函数图象分别求出b、c的值,再求出时,y的值,然后根据每分钟的出水量列出等式求解即可.【详解】设每分钟的进水量为,出水量为由第一段函数图象可知,由第二段函数图象可知,即解得则当时,因此,解得故选:C.【点睛】本题考查了函数图象的应用,理解题意,从函数图象中正确获取信息,从而求出每分钟的进水量和出水量是解题关键.9.如图,在半径为3的⊙O中,是直径,是弦,是的中点,与交于点.若是的中点,则的长是()A. B. C. D.【答案】D【解析】【分析】连接DO、DA、DC,设DO与AC交于点H,证明△DHE≌△BCE,得到DH=CB,同时OH是三角形ABC中位线,设OH=x,则BC=2x=DH,故半径DO=3x,解出x,最后在Rt△ACB中由勾股定理即可求解.【详解】解:连接DO、DA、DC、OC,设DO与AC交于点H,如下图所示,∵D是的中点,∴DA=DC,∴D在线段AC的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∴DO⊥AC,∠DHC=90°,∵AB是圆的直径,∴∠BCA=90°,∵E是BD的中点,∴DE=BE,且∠DEH=∠BEC,∴△DHE≌△BCE(AAS),∴DH=BC,又O是AB中点,H是AC中点,∴HO是△ABC的中位线,设OH=x,则BC=DH=2x,∴OD=3x=3,∴x=1,即BC=2x=2,在Rt△ABC中,.故选:D.【点睛】本题考查了圆周角定理、三角形全等、勾股定理等,属于综合题,熟练掌握其性质和定理是解决此题的关键10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“”形纸片,图(2)是一张由6个小正方形组成的方格纸片.把“”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的方格纸片,将“”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有种不同放置方法,则的值是()A.160 B.128 C.80 D.48【答案】A【解析】【分析】先计算出方格纸片中共含有多少个方格纸片,再乘以4即可得.【详解】由图可知,在方格纸片中,方格纸片的个数为(个)则故选:A.【点睛】本题考查了图形类规律探索,正确得出在方格纸片中,方格纸片的个数是解题关键.二、填空题11.计算的结果是_______.【答案】3【解析】【分析】根据二次根式的性质进行求解即可.【详解】==3,故答案为3.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:),分别为:4,3,3,5,5,6.这组数据的中位数是________.【答案】【解析】【分析】根据中位数的定义即可得.【详解】将这组数据按从小到大进行排序为则这组数据的中位数
2020年武汉市中考数学试题及答案
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片