2020年湖南省怀化市中考数学试卷一、选择题(每小题3分,共40分;每小題的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.(3分)下列数中,是无理数的是( )A.﹣3 B.0 C. D.2.(3分)下列运算正确的是( )A.a2+a3=a5 B.a6÷a2=a4 C.(2ab)3=6a3b3 D.a2•a3=a63.(3分)《三国演义》《红楼梦》《水浒传》《西游记》是我国古典长篇小说四大名著.其中2016年光明日报出版社出版的《红楼梦》有350万字,则“350万”用科学记数法表示为( )A.3.5×106 B.0.35×107 C.3.5×102 D.350×1044.(3分)若一个多边形的内角和为1080°,则这个多边形的边数为( )A.6 B.7 C.8 D.95.(3分)如图,已知直线a,b被直线c所截,且a∥b,若∠α=40°,则∠β的度数为( )A.140° B.50° C.60° D.40°6.(3分)小明到某公司应聘,他想了解自己入职后的工资情况,他需要关注该公司所有员工工资的( )A.众数 B.中位数 C.方差 D.平均数7.(3分)在Rt△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为点E,若BD=3,则DE的长为( )A.3 B. C.2 D.68.(3分)已知一元二次方程x2﹣kx+4=0有两个相等的实数根,则k的值为( )A.k=4 B.k=﹣4 C.k=±4 D.k=±29.(3分)在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为( )A.4 B.6 C.8 D.1010.(3分)在同一平面直角坐标系中,一次函数y1=k1x+b与反比例函数y2=(x>0)的图象如图所示,则当y1>y2时,自变量x的取值范围为( )A.x<1 B.x>3 C.0<x<1 D.1<x<3二、填空题(每小题3分,共24分;请将答案直接填写在答题卡的相应位置上)11.(3分)代数式有意义,则x的取值范围是 .12.(3分)因式分解:x3﹣x= .13.(3分)某校招聘教师,其中一名教师的笔试成绩是80分,面试成绩是60分,综合成绩笔试占60%,面试占40%,则该教师的综合成绩为 分.14.(3分)如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D= °.15.(3分)如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是 (结果保留π).16.(3分)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△An﹣1BnAn,都是一边在x轴上的等边三角形,点B1,B2,B3,…,Bn都在反比例函数y=(x>0)的图象上,点A1,A2,A3,…,An,都在x轴上,则An的坐标为 .三、解答题(本大题共8小题,共86分)17.计算:+2﹣2﹣2cos45°+|2﹣|.18.先化简,再求值:(﹣)÷,然后从﹣1,0,1中选择适当的数代入求值.19.为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有 名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为 度;(2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.20.如图,某数学兴趣小组为测量一棵古树的高度,在距离古树A点处测得古树顶端D的仰角为30°,然后向古树底端C步行20米到达点B处,测得古树顶端D的仰角为45°,且点A、B、C在同一直线上,求古树CD的高度.(已知:≈1.414,≈1.732,结果保留整数)21.定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是 ;(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD中,AD∥BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.22.某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.(1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.23.如图,在⊙O中,AB为直径,点C为圆上一点,延长AB到点D,使CD=CA,且∠D=30°.(1)求证:CD是⊙O的切线.(2)分别过A、B两点作直线CD的垂线,垂足分别为E、F两点,过C点作AB的垂线,垂足为点G.求证:CG2=AE•BF.24.如图所示,抛物线y=x2﹣2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.(1)求点C及顶点M的坐标.(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求△BCN面积的最大值及此时点N的坐标.(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,求出点G的坐标;若不存在,试说明理由.(4)直线CM交x轴于点E,若点P是线段EM上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,求出点P的坐标;若不存在,请说明理由.2020年湖南省怀化市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共40分;每小題的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1.【分析】根据无理数的三种形式求解即可.【解答】解:﹣3,0,是有理数,是无理数.故选:D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.【分析】分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案.【解答】解:a2与a3不是同类项,不能合并,因此选项A计算错误,不符合题意;a6÷a2=a4,因此选项B计算正确,符合题意;(2ab)3=8a3b3≠6a3b3,因此选项C计算错误,不符合题意;a2•a3=a5≠a6,因此选项D计算错误,不符合题意.故选:B.【点评】本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键.3.【分析】科学记数法的形式是:a×10n,其中1≤|a|<10,n为整数.所以a=3.5,n取决于原数小数点的移动位数与移动方向,n是小数点的移动位数,往左移动,n为正整数,往右移动,n为负整数.本题小数点往左移动到3的后面,所以n=6.【解答】解:350万=350×104=3.5×102×104=3.5×106.故选:A.【点评】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好a,n的值,同时掌握小数点移动对一个数的影响.4.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180°(n﹣2)=1080°,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180°(n﹣2)=1080°,解得:n=8.故选:C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.5.【分析】首先根据对顶角相等可得∠1的度数,再根据平行线的性质可得∠β的度数.【解答】解:∵∠α=40°,∴∠1=∠α=40°,∵a∥b,∴∠β=∠1=40°.故选:D.【点评】此题主要考查了对顶角相等和平行线的性质,关键是掌握两直线平行,同位角相等的知识点.6.【分析】根据题意,结合该公司所有员工工资的情况,从统计量的角度分析可得答案.【解答】解:根据题意,小明到某公司应聘,了解这家公司的员工的工资情况,就要全面的了解中间员工的工资水平,故最应该关注的数据是中位数,故选:B.【点评】本题考查的是平均数,众数,中位数,方差的含义,以及在实际情境中统计意义,掌握以上知识是解题的关键.7.【分析】根据角平分线的性质即可求得.【解答】解:∵∠B=90°,∴DB⊥AB,又∵AD平分∠BAC,DE⊥AC,∴DE=BD=3,故选:A.【点评】本题考查了角平分线的性质,熟练掌握角平分线的性质定理是解题关键8.【分析】根据方程的系数结合根的判别式△=0,即可得出关于k的方程,解之即可得出k值.【解答】解:∵一元二次方程x2﹣kx+4=0有两个相等的实数根,∴△=(﹣k)2﹣4×1×4=0,解得:k=±4.故选:C.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.9.【分析】根据矩形的性质得到OA=OB=OC=OD,推出S△ADO=S△BCO=S△CDO=S△ABO=2,即可求出矩形ABCD的面积.【解答】解:∵四边形ABCD是矩形,对角线AC、BD相交于点O,∴AC=BD,且OA=OB=OC=OD,∴S△ADO=S△BCO=S△CDO=S△ABO=2,∴矩形ABCD的面积为4S△ABO=8,故选:C.【点评】此题考查矩形的性质:矩形的对角线相等,且互相平分,由此可以将矩形的面积四等分,由此可以解决问题,熟记矩形的性质定理是解题的关键.10.【分析】根据函数图象得到两个交点的横坐标,再观察一次函数图象在反比例函数图象上方的部分,即可得到x的取值范围.【解答】解:由图象可得,当y1>y2时,自变量x的取值范围为1<x<3,故选:D.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(每小题3分,共24分;请将答案直接填写在答题卡的相应位置上)11.【分析】根据二次根式有意义和分式有意义的条件可得x﹣1>0,再解不等式即可.【解答】解:由题意得:x﹣1>0,解得:x>1,故答案为:x>1.【点评】此题主要考查了二次根式有意义和分式有意义的条件,正确把握相关定义是解题关键.12.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(x2﹣1)=x(x+1)(x﹣1),故答案为:x(x+1)(x﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【分析】根据综合成绩笔试占60%,面试占40%,即综合成绩等于笔试成绩乘以60%,加上面试成绩乘以40%,即可求解.【解答】解:根据题意知,该名老师的综合成绩为80×60%+60×40%=72(分)故答案为:72.【点评】本题考查加权平均数及其计算,是中考的常考知识点,熟练掌握其计算方法是解题的关键.14.【分析】根据全等三角形的判定定理得出△ABC≌△ADC,根据全等三角形的性质得出∠D=∠B,代入求出即可.【解答】证明:在△ADC和△ABC中,,∴△ABC≌△ADC(SSS),∴∠D=∠B,∵∠B=130°,∴∠D=130°,故答案为:130.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是解此题的关键.15.【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:由三视图可知该几何体是圆柱体,其底面半径是4÷2=2,高是6,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,
2020年湖南省怀化市中考数学试卷
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片