2021年武汉市初中毕业生学业考试数学试卷(word版)

2023-10-31 · U1 上传 · 5页 · 695.7 K

2021年武汉市初中毕业生学业考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.实数3的相反数是()A.3 B.-3 C. D.-2.下列事件中是必然事件的是()A.抛掷一枚质地均匀的硬币,正面朝上B.随意翻到一本书的某页,这一页的页码是偶数C.打开电视机,正在播放广告D.从两个班级中任选三名学生,至少有两名学生来自同一个班级3.下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.4.计算(-a2)3的结果是()A.-a6 B.a6 C.-a5 D.a55.如图是由4个相同的小正方体组成的几何体,它的主视图是() A.B. C. D.6.学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是()A. B. C. D.7,我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是:现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是()A.8(x-3)=7(x+4) B.8x+3=7x-4 C.= D.=8.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是()A.h B.h C.h D.h9.如图,AB是⊙O的直径,BC是⊙O的弦,先将沿BC翻折交AB于点D.再将沿AB翻折交BC于点E.着=,设∠ABC=α,则α所在的范围是()A.21.9°<α<22.3° B.22.3°<α<22.7° C.22.7°<α<23.1° D.23.1°<α<23.5°10.已知a,b是方程x2-3x-5=0的两根,则代数式2a3-6a2+b2+7b+1的值是()A.-25 B.-24 C.35 D.36二、填空题(共6小题,每小题3分,共18分)11.计算的结果是__________.12.我国是一个人口资源大国,第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是__________.城市北京上海广州重庆成都常住人口数/万2189248718683205209413.已知点A(a,y1),B(a+1,y2)在反比例函数y=(m是常数)的图象上,且y1<y2,则a的取值范围是__________.14.如图,海中有一个小岛A,一艘轮船由西向东航行,在B点测得小岛A在北偏东60°方向上;航行12nmile到达C点,这时测得小岛A在北偏东30°方向上.小岛A到航线BC的距离是__________nmile(≈1.73,结果用四舍五入法精确到0.1).15.己知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0,下列四个结论:①若抛物线经过点(-3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=-2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是__________(填写序号).16.如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是__________. 三、解答题(共8小题,共72分)17.(本小题满分8分)解不等式组请按下列步骤完成解答.(1)解不等式①,得_____________;(2)解不等式②,得_____________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是_____________.18.(本小题满分8分)如图,AB∥CD,∠B=∠D,直线EF与AD,BC的延长线分别交于点E,F.求证:∠DEF=∠F.19.(本小题满分8分)为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:h),按劳动时间分为四组:A组“t<5”,B组“5≤t<7”,C组“7≤t<9”,D组“t≥9”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是________,C组所在扇形的圆心角的大小是__________;(2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h的学生人数.20.(本小题满分8分)如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使AE=2BE,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画△BCD的高CG,再在边AB上画点H,使BH=DH.21.(本小题满分8分)如图,AB是⊙O的直径,CD是⊙O上两点,C是的中点,过点C作AD的垂线,垂足是E.连接AC交BD于点F.(1)求证,CE是⊙O的切线:(2)若=,求cos∠ABD的值.22.(本小题满分10分)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品,A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费十其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.23.(本小题满分10分)问题提出如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E在△ABC内部,直线AD与BE交于点F,线段AF,BF,CF之间存在怎样的数量关系?问题探究(1)先将问题特殊化.如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;(2)再探究一般情形.如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常数),点E在△ABC内部,直线AD与BE交于点F,直接写出一个等式,表示线段AF,BF,CF之间的数量关系.24.(本小题满分12分)抛物线y=x2-1交x轴于A,B两点(A在B的左边).(1)□ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上.①如图(1),若点C的坐标是(0,3),点E的模坐标是,直接写出点A,D的坐标;②如图(2),若点D在抛物线上,且□ACDE的面积是12,求点E的坐标;(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点,若直线l与抛物线只有一个公共点,求证FG+FH的值是定值.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐