2012年甘肃省兰州市中考数学试题(含答案)

2023-10-31 · U1 上传 · 27页 · 985.8 K

2012年兰州市中考数学试题一、单项选择题(每小题4分,共60分)1.sin60°的相反数是【】A.-EQ\F(1,2)B.-EQ\F(eq\r(3),3)C.-EQ\F(eq\r(3),2)D.-EQ\F(eq\r(2),2)2.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为【】A.y=EQ\F(400,x)B.y=EQ\F(1,4x)C.y=EQ\F(100,x)D.y=EQ\F(1,400x)3.已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是【】A.相交B. 外切C.外离D.内含4.抛物线y=-2x2+1的对称轴是【】A.直线x=EQ\F(1,2)B.直线x=-EQ\F(1,2)C.y轴D.直线x=25.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为【】A.6B.8C.12D.246.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为【】A.πB.1C.2D.EQ\F(,3)7.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是【】A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位8.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是【】A.0.2B.0.3C.0.4D.0.59.在反比例函数y=EQ\F(k,x)(k<0)的图象上有两点(-1,y1),(-EQ\F(1,4),y2),则y1-y2的值是【】A.负数B.非正数C.正数D.不能确定10.某学校准备修建一个面积为200m2的矩形花圃,它的长比宽多10m,设花圃的宽为xm,则可列方程为【】A.x(x-10)=200B.2x+2(x-10)=200C.x(x+10)=200D.2x+2(x+10)=20011.已知二次函数y=a(x+1)2-b(a≠0)有最小值,则a、b的大小关系为【】A.a>bB.a<bC.a=bD.不能确定12.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF是直角三角形时,t(s)的值为【】A.EQ\F(7,4)B.1C.EQ\F(7,4)或1D.EQ\F(7,4)或1或EQ\F(9,4)13.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为【】A.130°B.120°C.110°D.100°14.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是【】A.k<-3B.k>-3C.k<3D.k>315.在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是【】A.B.C.D.二、填空题(每小题4分,共20分)16.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是.17.如图,点A在双曲线y=EQ\F(1,x)上,点B在双曲线y=EQ\F(3,x)上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.19.如图,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P在x轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是.20.如图,M为双曲线y=EQ\F(eq\r(3),x)上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为.三、解答题(本大题8小题,共70分)21.已知x是一元二次方程x2-2x+1=0的根,求代数式EQ\F(x-3,3x2-6x)÷EQ\B(x+2-EQ\F(5,x-2))的值.22.在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1),虚线为楼梯的倾斜度,斜度线与地面的夹角为倾角,一般情况下,倾角越小,楼梯的安全程度越高;如图(2)设计者为了提高楼梯的安全程度,要把楼梯的倾角1减至2,这样楼梯所占用地板的长度由d1增加到d2,已知d1=4m,∠1=40°,∠2=36°,求楼梯占用地板增加的长度(计算结果精确到0.01m,参考数据:tan40°=0.839,tan36°=0.727).23.如图(1),矩形纸片ABCD,把它沿对角线BD向上折叠,(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法);(2)折叠后重合部分是什么图形?说明理由.24.5月23、24日,兰州市九年级学生进行了中考体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出第一组的频率为0.04,丙同学计算出从左至右第二、三、四组的频数比为4∶17∶15.结合统计图回答下列问题:(1)这次共抽取了多少名学生的一分钟跳绳测试成绩?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩中的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?25.如图,定义:若双曲线y=EQ\F(k,x)(k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线y=EQ\F(k,x)(k>0)的对径.(1)求双曲线y=EQ\F(1,x)的对径;(2)若双曲线y=EQ\F(k,x)(k>0)的对径是10eq\r(2),求k的值;(3)仿照上述定义,定义双曲线y=EQ\F(k,x)(k<0)的对径.[来源:学科网]26.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.(1)判断DE与⊙O的位置关系并说明理由;(2)若tanC=EQ\F(eq\r(5),2),DE=2,求AD的长.27.若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-EQ\F(b,a),x1•x2=EQ\F(c,a).把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x1-x2|====.参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为直角三角形时,求b2-4ac的值;(2)当△ABC为等边三角形时,求b2-4ac的值.28.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=EQ\F(2,3)x2+bx+c经过点B,且顶点在直线x=EQ\F(5,2)上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由. 2012年甘肃省兰州市中考数学试卷参考答案与试题解析一、单项选择题(每小题4分,共60分).1.sin60°的相反数是( ) A.B.C.D.考点:特殊角的三角函数值。分析:根据特殊角的三角函数值和相反数的定义解答即可.解答:解:∵sin60°=,∴sin60°的相反数是-,故选C.点评:本题考查特殊角的三角函数值和相反数的定义,要求学生牢记并熟练运用.2.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为( ) A.[来源:学科网]B.C.D.y=考点:根据实际问题列反比例函数关系式。专题:应用题。分析:设出反比例函数解析式,把(0.25,400)代入即可求解.解答:解:设y=,400度近视眼镜镜片的焦距为0.25m,∴k=0.25×400=100,∴y=.故选C.点评:反比例函数的一般形式为y=(k是常数,且k≠0),常用待定系数法求解函数解析式.3.已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是( ) A.相交B.外切C.外离D.内含考点:圆与圆的位置关系。分析:本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.解答:解:由题意知,两圆圆心距d=3>R-r=2且d=3<R+r=6,故两圆相交.故选A.点评:本题主要考查两圆之间的位置关系,两圆外离,则P>R+r;外切,则P=R+r;相交,则R-r<P<R+r;内切,则P=R-r;内含,则P<R-r.(P表示圆心距,R,r分别表示两圆的半径).4.抛物线y=-2x2+1的对称轴是( ) A.直线B.直线C.y轴D.直线x=2考点:二次函数的性质。分析:已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴.解答:解:∵抛物线y=-2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选C.点评:主要考查了求抛物线的顶点坐标与对称轴的方法.5.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( ) A.6B.8C.12D.24考点:由三视图判断几何体。分析:找到主视图中原几何体的长与高让它们相乘即可.解答:解:主视图反映物体的长和高,左视图反映物体的宽和高,俯视图反映物体的长和宽.结合三者之间的关系从而确定主视图的长和高分别为4,2,所以面积为8,故选B.点评:解决本题的关键是根据所给的左视图和俯视图得到主视图的各边长.6.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为( ) A.πB.1C.2D.考点:扇形面积的计算;弧长的计算。专题:新定义。分析:根据扇形的面积公式计算.解答:解:设扇形的半径为r,根据弧长公式得S=rl=r2=2故选C.点评:本题主要考查了扇形的面积公式.7.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐