2019年甘肃省武威、白银、定西、平凉、酒泉、临夏州、张掖、陇南、庆阳、金昌中考数学试题(原卷版)

2023-10-31 · U1 上传 · 7页 · 184 K

2019年甘肃省白银中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下列四个几何体中,是三棱柱的为( )A. B. C. D.2.(3分)如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是( )A.0 B.1 C.2 D.33.(3分)下列整数中,与最接近的整数是( )A.3 B.4 C.5 D.64.(3分)华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( )A.7×10﹣7 B.0.7×10﹣8 C.7×10﹣8 D.7×10﹣95.(3分)如图,将图形用放大镜放大,应该属于( )A.平移变换 B.相似变换 C.旋转变换 D.对称变换6.(3分)如图,足球图片正中的黑色正五边形的内角和是( )A.180° B.360° C.540° D.720°7.(3分)不等式2x+9≥3(x+2)的解集是( )A.x≤3 B.x≤﹣3 C.x≥3 D.x≥﹣38.(3分)下面的计算过程中,从哪一步开始出现错误( )A.① B.② C.③ D.④9.(3分)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是( )A.22.5° B.30° C.45° D.60°10.(3分)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为( )A.3 B.4 C.5 D.6二、填空题:本大题共8小题,每小题4分,共32分.11.(4分)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“卒”位于点 .12.(4分)一个猜想是否正确,科学家们要经过反复的试验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次数3109204849791803139699频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为 (精确到0.1).13.(4分)因式分解:xy2﹣4x= .14.(4分)关于x的一元二次方程x2+x+1=0有两个相等的实数根,则m的取值为 .15.(4分)将二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k的形式为 .16.(4分)把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于 .17.(4分)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k= .18.(4分)已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是 .三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:(﹣2)2﹣|﹣2|﹣2cos45°+(3﹣π)020.(6分)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?21.(8分)已知:在△ABC中,AB=AC.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O= .22.(8分)图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73).23.(10分)2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明,证明过程或演算步骤.24.(8分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a= ,b= ,c= ,d= .(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.25.(10分)如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P(a,0)(a>0),过点P作平行于y轴的直线,在第一象限内交一次函数y=﹣x+b的图象于点M,交反比例函数y=上的图象于点N.若PM>PN,结合函数图象直接写出a的取值范围.26.(10分)如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC边上,⊙D经过点A和点B且与BC边相交于点E.(1)求证:AC是⊙D的切线;(2)若CE=2,求⊙D的半径.27.(10分)阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.28.(12分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PN⊥BC,垂足为点N.请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐