2014年甘肃省兰州市中考数学试题(含答案)

2023-10-31 · U1 上传 · 19页 · 502.3 K

甘肃省兰州市2014年中考数学试卷 一、选择题(共15小题,每小题4分,共60分)1.(4分)(2014•兰州)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( ) A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2.(4分)(2014•兰州)下列说法中错误的是( ) A.掷一枚均匀的骰子,骰子停止转动后6点朝上是必然事件 B.了解一批电视机的使用寿命,适合用抽样调查的方式 C.若a为实数,则|a|<0是不可能事件 D.甲、乙两人各进行10次射击,两人射击成绩的方差分别为=2,=4,则甲的射击成绩更稳定考点:随机事件;全面调查与抽样调查;方差分析:利用事件的分类、普查和抽样调查的特点以及方差的性质即可作出判断.解答:解:A.掷一枚均匀的骰子,骰子停止转动后6点朝上是随机事件,故本项错误;B.了解一批电视机的使用寿命,具有破坏性,适合用抽样调查的方式,故本项正确;C.若a为实数,则|a|≥0,|a|<0是不可能事件,故本项正确;D.方差小的稳定,故本项正确.故选:A.点评:本题考查了事件的分类、普查和抽样调查的特点以及方差的性质.本题解决的关键是理解必然事件和随机事件的概念;用到的知识点为:具有破坏性的事要采用抽样调查;反映数据波动情况的量有极差、方差和标准差等. 3.(4分)(2014•兰州)函数y=中,自变量x的取值范围是( ) A.x>﹣2B.x≥﹣2C.x≠2D.x≤﹣2考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:根据题意得,x+2≥0,解得x≥﹣2.故选B.点评:本题考查的知识点为:二次根式的被开方数是非负数. 4.(4分)(2014•兰州)期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映处的统计量是( ) A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数考点:统计量的选择分析:根据中位数和众数的定义回答即可.解答:解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选D.点评:本题考查了众数及中位数的定义,属于统计基础知识,难度较小. 5.(4分)(2014•兰州)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于( ) A.B.C.D.考点:锐角三角函数的定义;勾股定理.分析:首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.解答:解:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=.∴cosA=,故选:D.点评:本题主要考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边. 6.(4分)(2014•兰州)抛物线y=(x﹣1)2﹣3的对称轴是( ) A.y轴B.直线x=﹣1C.直线x=1D.直线x=﹣3考点:二次函数的性质.分析:根据二次函数的顶点式y=(x﹣h)2+k,对称轴为直线x=h,得出即可.解答:解:抛物线y=(x﹣3)2﹣1的对称轴是直线x=3.故选:C.点评:本题考查了二次函数的性质,解答此题时要注意抛物线的对称轴是直线,这是此题易忽略的地方. 7.(4分)(2014•兰州)下列命题中正确的是( ) A.有一组邻边相等的四边形是菱形 B.有一个角是直角的平行四边形是矩形 C.对角线垂直的平行四边形是正方形 D.一组对边平行的四边形是平行四边形考点:命题与定理.分析:利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.解答:解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选B.点评:本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题. 8.(4分)(2014•兰州)两圆的半径分别为2cm,3cm,圆心距为2cm,则这两个圆的位置关系是( ) A.外切B.相交C.内切D.内含考点:圆与圆的位置关系分析:由两个圆的半径分别是3cm和2cm,圆心距为2cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.[来源:学科网ZXXK]解答:解:∵两个圆的半径分别是3cm和2cm,圆心距为2cm,又∵3+2=5,3﹣2=1,1<2<5,∴这两个圆的位置关系是相交.故选B.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键. 9.(4分)(2014•兰州)若反比例函数的图象位于第二、四象限,则k的取值可以是( ) A.0B.1C.2D.以上都不是考点:反比例函数的性质.专题:计算题.分析:反比例函数的图象位于第二、四象限,比例系数k﹣1<0,即k<1,根据k的取值范围进行选择.解答:解:∵反比例函数的图象位于第二、四象限,∴k﹣1<0,即k<1.故选A.点评:本题考查了反比例函数的性质.对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内. 10.(4分)(2014•兰州)一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac满足的条件是( ) A.b2﹣4ac=0B.b2﹣4ac>0C.b2﹣4ac<0D.b2﹣4ac≥0考点:根的判别式.分析:已知一元二次方程的根的情况,就可知根的判别式△=b2﹣4ac值的符号.解答:解:∵一元二次方程有两个不相等的实数根,∴△=b2﹣4ac>0.故选B.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 11.(4分)(2014•兰州)把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( ) A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣2考点:二次函数图象与几何变换[来源:学科网ZXXK]分析:根据图象右移减,上移加,可得答案.解答:解:把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=﹣2(x﹣1)2+2,故选:C.点评:本题考查了二次函数图象与几何变换,图象的平移规律是:左加右减,上加下减. 12.(4分)(2014•兰州)如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C′,则点B转过的路径长为( ) A.B.C.D.π考点:旋转的性质;弧长的计算.分析:利用锐角三角函数关系得出BC的长,进而利用旋转的性质得出∠BCB′=60°,再利用弧长公式求出即可.解答:解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,∴cos30°=,∴BC=ABcos30°=2×=,∵将△ABC绕直角顶点C逆时针旋转60°得△A′B′C′,∴∠BCB′=60°,∴点B转过的路径长为:=π.故选:B.点评:此题主要考查了旋转的性质以及弧长公式应用,得出点B转过的路径形状是解题关键. 13.(4分)(2014•兰州)如图,CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是( ) A.AE=BEB.=C.OE=DED.∠DBC=90°考点:垂径定理;圆周角定理.分析:由于CD⊥AB,根据垂径定理有AE=BE,弧AD=弧BD,不能得出OE=DE,直径所对的圆周角等于90°.解答:解:∵CD⊥AB,∴AE=BE,=,∵CD是⊙O的直径,∴∠DBC=90°,不能得出OE=DE.故选C.点评:本题考查了垂径定理.解题的关键是熟练掌握垂径定理的内容. 14.(4分)(2014•兰州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是( ) A.c>0B.2a+b=0C.b2﹣4ac>0D.a﹣b+c>0考点:二次函数图象与系数的关系.专题:压轴题.分析:本题考查二次函数图象的相关知识与函数系数的联系.需要根据图形,逐一判断.解答:解:A、因为二次函数的图象与y轴的交点在y轴的上方,所以c>0,正确;B、由已知抛物线对称轴是直线x=1=﹣,得2a+b=0,正确;C、由图知二次函数图象与x轴有两个交点,故有b2﹣4ac>0,正确;D、直线x=﹣1与抛物线交于x轴的下方,即当x=﹣1时,y<0,即y=ax2+bx+c=a﹣b+c<0,错误.故选D.点评:在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用. 15.(4分)(2014•兰州)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是( )[来源:学科网] A.B.C.D.考点:动点问题的函数图象.分析:根据三角形的面积即可求出S与t的函数关系式,根据函数关系式选择图象.解答:解:①当0≤t≤4时,S=×t×t=t2,即S=t2.该函数图象是开口向上的抛物线的一部分.故B、C错误;②当4<t≤8时,S=16﹣×(t﹣4)×(t﹣4)=t2,即S=﹣t2+4t+8.该函数图象是开口向下的抛物线的一部分.故A错误.故选:D.点评:本题考查了动点问题的函数图象.本题以动态的形式考查了分类讨论的思想,函数的知识和等腰直角三角形,具有很强的综合性. 二、填空题(共5小题,每小题4分,共20分)16.(4分)(2014•兰州)在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y,则点P(x,y)落在直线y=﹣x+5上的概率是 .考点:列表法与树状图法;一次函数图象上点的坐标特征分析:首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案.解答:解:列表得:12341(1,1)(1,2)(1,3)(1,4)2(2,1)(2,2)(2,3)(2,4)3(3,1)(3,2)(3,3)(3,4)4(

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐