2022年浙江省绍兴市中考数学真题一、选择题1.实数-6的相反数是()A. B. C.-6 D.6【答案】D【解析】【分析】根据只有符号不同的两个数是互为相反数求解即可.【详解】解:-6的相反数是6,故选:D.【点睛】本题考查相反数,掌握相反数的定义是解题的关键.2.年北京冬奥会3个赛区场馆使用绿色电力,减排吨二氧化碳.数字用科学记数法表示是()A. B. C. D.【答案】B【解析】【分析】根据科学记数法“把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数),这样的记数方法叫科学记数法”即可得.【详解】解:,故选B.【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法.3.由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】B【解析】【分析】根据题目中的图形,可以画出主视图,本题得以解决.【详解】解:由图可得,题目中图形的主视图是,故选:B.【点睛】本题考查简单组合体的三视图,解题的关键是画出相应的图形.4.在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是()A. B. C. D.【答案】A【解析】【分析】根据概率公式计算,即可求解.【详解】解:根据题意得:从袋中任意摸出一个球为红球的概率是.故选:A【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.5.下列计算正确的是()A. B.C. D.【答案】A【解析】【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A、,原式计算正确;B、,原式计算错误;C、,原式计算错误;D、,原式计算错误;故选:A.【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.6.如图,把一块三角板的直角顶点B放在直线上,,ACEF,则()A.30° B.45°C.60° D.75°【答案】C【解析】【分析】根据三角板的角度,可得,根据平行线的性质即可求解.【详解】解:,ACEF,故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.7.已知抛物线的对称轴为直线,则关于x的方程的根是()A.0,4 B.1,5 C.1,-5 D.-1,5【答案】D【解析】【分析】根据抛物线的对称轴为直线可求出m的值,然后解方程即可.【详解】抛物线的对称轴为直线,,解得,关于x的方程为,,解得,故选:D.【点睛】本题考查了二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.8.如图,在平行四边形中,,,,是对角线上的动点,且,,分别是边,边上的动点.下列四种说法:①存在无数个平行四边形;②存在无数个矩形;③存在无数个菱形;④存在无数个正方形.其中正确的个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据题意作出合适的辅助线,然后逐一分析即可.【详解】如图,连接AC、与BD交于点O,连接ME,MF,NF,EN,MN,∵四边形ABCD是平行四边形∴OA=OC,OB=OD∵BE=DF∴OE=OF∵点E、F时BD上的点,∴只要M,N过点O,那么四边形MENF就是平行四边形∴存在无数个平行四边形MENF,故①正确;只要MN=EF,MN过点O,则四边形MENF是矩形,∵点E、F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,MN过点O,则四边形MENF是菱形;∵点E、F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,MN过点O,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误;故选:C【点睛】本题考查正方形的判定、菱形的判定、矩形的判定、平行四边形的判定、解答本题的关键时明确题意,作出合适的辅助线.9.已知为直线上的三个点,且,则以下判断正确的是( ).A.若,则 B.若,则C.若,则 D.若,则【答案】D【解析】【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y=−2x+3∴y随x增大而减小,当y=0时,x=1.5∵(x1,y1),(x2,y2),(x3,y3)为直线y=−2x+3上的三个点,且x10,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选:D.【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.10.将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片,其中,,,,,则剪掉的两个直角三角形的斜边长不可能是()A. B. C.10 D.【答案】A【解析】【分析】根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可判断哪个选项符合题意.【详解】解:当△DFE∽△ECB时,如图,∴,设DF=x,CE=y,∴,解得:,∴,故B选项不符合题意;∴,故选项D不符合题意;如图,当△DCF∽△FEB时,∴,设FC=m,FD=n,∴,解得:,∴FD=10,故选项C不符合题意;,故选项A符合题意;故选:A【点睛】本题考查相似三角形的性质、矩形的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.二、填空题11.分解因式:=______.【答案】【解析】【分析】利用提公因式法即可分解.【详解】,故答案为:.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.12.关于的不等式的解是______.【答案】【解析】【分析】将不等式移项,系数化为1即可得.【详解】解:,故答案为:.【点睛】本题考查了解一元一次不等式,解题的关键是掌握解一元一次不等式的方法.13.元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行里,劣马每天行里,劣马先行天,良马要几天追上劣马?”答:良马追上劣马需要的天数是______.【答案】20【解析】【分析】设良马x天追上劣马,根据良马追上劣马所走路程相同可得:240x=150(x+12),即可解得良马20天追上劣马.【详解】解:设良马x天追上劣马,根据题意得:240x=150(x+12),解得x=20,答:良马20天追上劣马;故答案为:20.【点睛】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列出方程.14.如图,在中,,,以点为圆心,长为半径作弧,交射线于点,连接,则的度数是______.【答案】10°或100°【解析】【分析】分两种情况画图,由作图可知得,根据等腰三角形的性质和三角形内角和定理解答即可.【详解】解:如图,点即为所求;在中,,,,由作图可知:,,;由作图可知:,,,,.综上所述:的度数是或.故答案为:或.【点睛】本题考查了作图复杂作图,三角形内角和定理,等腰三角形的判定与性质,解题的关键是掌握基本作图方法.15.如图,在平面直角坐标系xOy中,点(0,4),(3,4),将向右平移到位置,的对应点是,的对应点是,函数的图象经过点和的中点,则的值是______.【答案】6【解析】【分析】作FG⊥x轴,DQ⊥x轴,FH⊥y轴,设AC=EO=BD=a,表示出四边形ACEO的面积,再根据三角形中位线的性质得出FG,EG,即可表示出四边形HFGO的面积,然后根据k的几何意义得出方程,求出a,可得答案.【详解】过点F作FG⊥x轴,DQ⊥x轴,FH⊥y轴,根据题意,得AC=EO=BD,设AC=EO=BD=a,∴四边形ACEO的面积是4a.∵F是DE的中点,FG⊥x轴,DQ⊥x轴,∴FG是△EDQ的中位线,∴,,∴四边形HFGO的面积为,∴,解得,∴k=6.故答案为:6.【点睛】本题主要考查了反比例函数中k的几何意义,正确的作出辅助线构造矩形是解题的关键.16.如图,,点在射线上的动点,连接,作,,动点在延长线上,,连接,,当,时,的长是______.【答案】5或【解析】【分析】过点C作CN⊥BE于N,过点D作DM⊥CN延长线于M,连接EM,设BN=x,则CN=3x,由△ACN≌△CDM可得AN=CM=10+x,CN=DM=3x,由点C、M、D、E四点共圆可得△NME是等腰直角三角形,于是NE=10-2x,由勾股定理求得AC可得CE,在Rt△CNE中由勾股定理建立方程求得x,进而可得BE;【详解】解:如图,过点C作CN⊥BE于N,过点D作DM⊥CN延长线于M,连接EM,设BN=x,则CN=BN•tan∠CBN=3x,∵△CAD,△ECD都是等腰直角三角形,∴CA=CD,EC=ED,∠EDC=45°,∠CAN+∠ACN=90°,∠DCM+∠ACN=90°,则∠CAN=∠DCM,在△ACN和△CDM中:∠CAN=∠DCM,∠ANC=∠CMD=90°,AC=CD,∴△ACN≌△CDM(AAS),∴AN=CM=10+x,CN=DM=3x,∵∠CMD=∠CED=90°,∴点C、M、D、E四点共圆,∴∠CME=∠CDE=45°,∵∠ENM=90°,∴△NME是等腰直角三角形,∴NE=NM=CM-CN=10-2x,Rt△ANC中,AC=,Rt△ECD中,CD=AC,CE=CD,Rt△CNE中,CE2=CN2+NE2,∴,,,x=5或x=,∵BE=BN+NE=x+10-2x=10-x,∴BE=5或BE=;故答案为:5或;【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键.三、解答题17.计算(1)计算:6tan30°+(+1)0-(2)解方程组【答案】(1)1(2)【解析】【分析】(1)根据特殊角的三角函数值,零指数幂,二次根式的性质化简,然后进行计算即可;(2)利用加减消元法解二元一次方程组即可.【小问1详解】解:原式=;【小问2详解】,①+②得3x=6,∴x=2,把x=2代入②,得y=0,∴原方程组的解是.【点睛】本题考查了特殊角的三角函数值,零指数幂,二次根式的性质,解二元一次方程组,解决本题的关键是掌握以上知识熟练运算.18.双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x(单位:小时)情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题.八年级学生每日完成书面作业所需时长情况的统计表组别所需时长(小时)学生人数(人)A15BmCnD5(1)求统计表中m,n的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足的共有多少人.【答案】(1)m为60,n为20(2)640人【解析】【分析】(1)先求出被调查总人数,再根据扇形统计图求出,用总人数减去、、的人数,即可得的值;(2)用被调查情况估计八年级800人的情况,即可得到答案.【小问1详解】解:被调查总人数:(人,(人,(人,答:为60,为20;【小问2详解】解:当时,在被调查的100人中有(人,在该校八年级学生800人中,每日完成书面作业所需时长满足的共有(人,答:估计共有640人.【点睛】本题考查统计图和统计表,解题的关键是掌握从图表中寻找“完整信息”从而求出被调查的总数.19.一个深为6米的