精品解析:2022年山东省青岛市中考数学真题(解析版)

2023-10-31 · U1 上传 · 29页 · 1.8 M

2022年青岛市初中学业水平考试数学试题(考试时间:120分钟满分:120分)说明:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共25题.第Ⅰ卷为选择题,共8小题,24分;第Ⅱ卷为填空题,作图题、解答题,共17小题,96分.2.所有题目均在答题卡上作答,在试题上作答无效.第Ⅰ卷(共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.我国古代数学家祖冲之推算出的近似值为,它与的误差小于0.0000003.将0.0000003用科学记数法可以表示为()A. B. C. D.【答案】A【解析】【分析】绝对值较小的数的科学记数法的一般形式为:a×10-n,在本题中a应为3,10的指数为-7.【详解】解:0.0000003故选A【点睛】本题考查的是用科学记数法表示绝对值较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数决定.2.北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4506件,其中很多设计方案体现了对称之美.以下4幅设计方案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.【详解】解:A、既不轴对称图形,又不是中心对称图形,该选项不符合题意;B、不是轴对称图形,是中心对称图形,该选项不符合题意;C、既是轴对称图形,又是中心对称图形,该选项符合题意;D、是轴对称图形,不是中心对称图形,该选项不符合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.计算的结果是()A. B.1 C. D.3【答案】B【解析】【分析】把括号内的每一项分别乘以再合并即可.【详解】解:故选:B.【点睛】本题考查是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.4.如图①.用一个平面截长方体,得到如图②的几何体,它在我国古代数学名著《九章算术》中被称为“堑堵”.图②“堑堵”的俯视图是() A. B. C. D.【答案】C【解析】【分析】根据几何体的俯视图是从上面看进行判断解答即可.【详解】解:由图可知,该“堑堵”的俯视图是,故选:C.【点睛】本题考查几何体的俯视图,理解俯视图的概念是解答的关键.5.如图,正六边形内接于,点M在上,则的度数为()A. B. C. D.【答案】D【解析】【分析】先求出正六边形的中心角,再利用圆周角定理求解即可.【详解】解:连接OC、OD、OE,如图所示: ∵正六边形内接于,∴∠COD==60°,则∠COE=120°,∴∠CME=∠COE=60°,故选:D.【点睛】本题考查正多边形的中心角、圆周角定理,熟练掌握正n多边形的中心角为是解答的关键.6.如图,将先向右平移3个单位,再绕原点O旋转,得到,则点A的对应点的坐标是()A. B. C. D.【答案】C【解析】【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解.【详解】解:先画出△ABC平移后的△DEF,再利用旋转得到△A'B'C',由图像可知A'(-1,-3),故选:C. 【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数.7.如图,O为正方形对角线的中点,为等边三角形.若,则的长度为()A. B. C. D.【答案】B【解析】【分析】利用勾股定理求出AC的长度,再利用等边三角形的性质即可解决问题.【详解】在正方形中:,∴,∵O为正方形对角线的中点,∴,∵为等边三角形,O为的中点,∴,,∴,∴,故选:B.【点睛】此题考查了正方形的性质,勾股定理,等边三角形的性质,掌握以上知识点是解题的关键.8.已知二次函数的图象开口向下,对称轴为直线,且经过点,则下列结论正确的是()A. B. C. D.【答案】D【解析】【分析】图象开口向下,得a<0,对称轴为直线,得b=2a,则b<0,图象经过,根据对称性可知,图象经过点,故c>0,当x=1时,a+b+c=0,将b=2a代入,可知3a+c=0.【详解】解:∵图象开口向下,∴a<0,∵对称轴为直线,∴b=2a,∴b<0,故A不符合题意;根据对称性可知,图象经过,∴图象经过点,∴c>0,故B不符合题意;当x=1时,a+b+c=0,故C不符合题意;将将b=2a代入,可知3a+c=0,故D符合题意.故选:D.【点睛】本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.第Ⅱ卷(共96分)二、填空题(本大题共6小题,每小题3分,共18分)9.﹣的绝对值是_____.【答案】【解析】【分析】绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示.|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离.【详解】﹣的绝对值是|﹣|=【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.10.小明参加“建团百年,我为团旗添光彩”主题演进比赛,其演讲形象、内容、效果三项得分分别是9分,8分,8分.若将三项得分依次按3∶4∶3的比例确定最终成绩,则小明的最终比赛成绩为__________分.【答案】8.3【解析】【分析】按三项得分的比例列代数式再计算即可.【详解】解:由题意得:故答案为:【点睛】本题考查的是加权平均数的含义,掌握“求解加权平均数的方法”是解本题的关键.11.为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x米/分,那么x满足的分式方程为__________.【答案】【解析】【分析】根据比赛时小亮的平均速度比训练前提高了25%,可得比赛时小亮平均速度为(1+25%)x米/分,根据比赛时所用时间比训练前少用3分钟列出方程.【详解】解:∵比赛时小亮的平均速度比训练前提高了25%,小亮训练前的平均速度为x米/分,∴比赛时小亮平均速度为(1+25%)x米/分,根据题意可得,故答案为:.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.12.图①是艺术家埃舍尔的作品,他将数学与绘画完美结合,在平面上创造出立体效果.图②是一个菱形,将图②截去一个边长为原来一半的菱形得到图③,用图③镶嵌得到图④,将图④着色后,再次镶嵌便得到图①,则图④中的度数是__________.【答案】60【解析】【分析】先确定∠BAD的度数,再利用菱形的对边平行,利用平行线的性质即可求出∠ABC的度数.【详解】如图,∵∠BAD=∠BAE=∠DAE,∠BAD+∠BAE+∠DAE=360°,∴∠BAD=∠BAE=∠DAE=120°,∵BC∥AD,∴∠ABC=180°-120°=60°,故答案为:60. 【点睛】本题考查了菱形的性质与学生读题审题的能力,解题关键是理解题意,求出∠BAD的度数.13.如图,是的切线,B为切点,与交于点C,以点A为圆心、以的长为半径作,分别交于点E,F.若,则图中阴影部分的面积为__________.【答案】【解析】【分析】先证明再利用阴影部分的面积等于三角形面积减去扇形面积即可得到答案.【详解】解:如图,连接OB,是的切线,设故答案为:【点睛】本题考查的是圆的切线的性质,扇形面积的计算,掌握“整体求解扇形的面积”是解本题的关键.14.如图,已知的平分线交于点E,且.将沿折叠使点C与点E恰好重合.下列结论正确的有:__________(填写序号)①②点E到的距离为3③④ 【答案】①④##④①【解析】【分析】根据等腰三角形的性质即可判断①,根据角平分线的性质即可判断②,设,则,中,,.继而求得,设,则,根据,进而求得的值,根据,,可得,即可判断④【详解】解:∵∴,故①正确;如图,过点作于,于, ,平分,,是角平分线,,,,故②不正确,.将沿折叠使点C与点E恰好重合,,设,则,中,,.,解得,故③不正确, 设,则,,,,,,,解得或(舍去),,,,故④正确,故答案为:①④【点睛】本题考查了解直角三角形,三线合一,角平分线的性质,掌握以上知识是解题的关键.三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.已知:,.求作:点P,使点P在内部,且.【答案】见解析【解析】【分析】分别以点B、C为圆心,大于BC长的一半为半径画弧,交于两点,连接这两点,然后再以点B为圆心,适当长为半径画弧,交AB、BC于点M、N,以点M、N为圆心,大于MN长一半为半径画弧,交于一点Q,连接BQ,进而问题可求解.【详解】解:如图,点P即为所求:【点睛】本题主要考查角平分线与垂直平分线的尺规作图,熟练掌握角平分线与垂直平分线的尺规作图是解题的关键.四、解答题(本大题共10小题,共74分)16.(1)计算:;(2)解不等式组:【答案】(1);(2)【解析】【分析】(1)先计算括号内的分式的减法,再把除法转化为乘法,约分后可得答案;(2)分别解不等式组中的两个不等式,再确定不等式解集的公共部分即可.【详解】(1)解:原式.(2)解:解不等式得:解不等式得:∴原不等式组的解集是.【点睛】本题考查的是分式的化简,一元一次不等式组的解法,掌握“分式混合运算的运算顺序与解一元一次不等式组的步骤”是解本题的关键.17.2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球,若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.【答案】游戏对双方都公平【解析】【分析】根据题意列表求得双方的概率即可求解.【详解】解:所有可能的结果如下:乙甲1234512∴共有10种等可能的结果,其中两球编号之和为奇数的有5种结果,两球编号之和为偶数的有5种结果.∴P(小冰获胜)P(小雪获胜)∵P(小冰获胜)=P(小雪获胜)∴游戏对双方都公平.【点睛】本题考查了游戏的公平性,列表法求概率,掌握求概率的方法是解题的关键.18.已知二次函数y=x2+mx+m2−3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2−3的图象与x轴交点的个数,并说明理由.【答案】(1)m=1(2)二次函数图象与x轴有两个交点,理由见解析.【解析】【分析】(1)把P(2,4)代入y=x2+mx+m2−3即可求得m的值;(2)首先求出Δ=b2-4ac的值,进而得出答案.【小问1详解】解:∵二次函数y=x2+mx+m2−3图象经过点P(2,4),∴4=4+2m+m2−3,即m2+2m−3=0,解得:m1=1,m2=−3,又∵m>0,∴m=1;【小问2详解】解:由(1)知二次函数y=x2+x−2,∵Δ=b2−4ac=12+8=9>0,∴二次函数y=x2+x−2的图象与x轴有两个交点.【点睛】此题主要考查了抛物线与x轴的交点以及一元二次方程的解法,得出△的值是解题关键.19.如图,为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A处时,某艘海上观光船位于小宇北偏东的点C处,观光船到滨海大道的距离为200米.当小宇沿滨海大道向东步行200米

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐