精品解析:2022年江苏省连云港市中考数学真题(原卷版)

2023-10-31 · U1 上传 · 7页 · 667.2 K

数学试题一、选择题(本大题共有8小题,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.-3的倒数是()A3 B.-3 C. D.2.下列图案中,是轴对称图形的是()A. B. C. D.3.2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A. B. C. D.4.在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是()A.38 B.42 C.43 D.455.函数中自变量取值范围是()A. B. C. D.6.的三边长分别为2,3,4,另有一个与它相似的三角形,其最长边为12,则的周长是()A.54 B.36 C.27 D.217.如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为() A. B. C. D.8.如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE=DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是()A.①②③ B.①③④ C.①④⑤ D.②③④二、填空题(本大题共8小题,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:______.10.已知∠A的补角是60°,则_________.11.写出一个在1到3之间的无理数:_________.12.若关于的一元二次方程的一个解是,则的值是___.13.如图,是⊙的直径,是⊙的切线,为切点,连接,与⊙交于点,连接.若,则_________. 14.如图,在正方形网格中,的顶点、、都在网格线上,且都是小正方形边的中点,则_________. 15.如图,一位篮球运动员投篮,球沿抛物线运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为,则他距篮筐中心的水平距离是_________.16.如图,在中,.利用尺规在、上分别截取、,使;分别以、为圆心,大于长为半径作弧,两弧在内交于点;作射线交于点.若,则的长为_________.三、解答题(本大题共11小题,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:.18.解不等式2x﹣1>,并把它的解集在数轴上表示出来.19.化简:.20.为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A乒乓球,B排球,C篮球,D跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表.问卷情况统计表:运动项目人数A乒乓球mB排球10C篮球80D跳绳70(1)本次调查的样本容量是_______,统计表中m=_________;(2)在扇形统计图中,“B排球”对应的圆心角的度数是_________;(3)若该校共有2000名学生,请你估计该校最喜欢“A乒乓球”的学生人数.21.“石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.(1)甲每次做出“石头”手势概率为_________;(2)用画树状图或列表的方法,求乙不输的概率.22.我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.23.如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像交于、两点.点,点的纵坐标为-2.(1)求反比例函数与一次函数的表达式;(2)求的面积.24.我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点处测得阿育王塔最高点的仰角,再沿正对阿育王塔方向前进至处测得最高点的仰角,;小亮在点处竖立标杆,小亮的所在位置点、标杆顶、最高点在一条直线上,,.(注:结果精确到,参考数据:,,)(1)求阿育王塔的高度;(2)求小亮与阿育王塔之间的距离.25.如图,四边形为平行四边形,延长到点,使,且.(1)求证:四边形为菱形;(2)若是边长为2的等边三角形,点、、分别在线段、、上运动,求的最小值.26.已知二次函数,其中. (1)当该函数图像经过原点,求此时函数图像的顶点的坐标;(2)求证:二次函数的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线上运动,平移后所得函数的图像与轴的负半轴的交点为,求面积的最大值.27.【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中,,.【问题探究】小昕同学将三角板绕点B按顺时针方向旋转. (1)如图2,当点落在边上时,延长交于点,求的长.(2)若点、、在同一条直线上,求点到直线的距离.(3)连接,取的中点,三角板由初始位置(图1),旋转到点、、首次在同一条直线上(如图3),求点所经过的路径长.(4)如图4,为的中点,则在旋转过程中,点到直线的距离的最大值是_____.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐