广西来宾市2021年中考数学真题(解析版)

2023-10-31 · U1 上传 · 26页 · 2.4 M

2021年广西来宾市中考数学试卷一、选择题(本大题共12小题,共36分)1.下列各数是有理数的是()A. B. C. D.【答案】D【解析】【分析】利用有理数和无理数的定义判断即可.【详解】解:四个选项的数中:,,是无理数,0是有理数,故选项D符合题意.故选:D.【点睛】此题考查了实数,熟练掌握有理数与无理数的定义是解本题的关键.2.如图是一个几何体的主视图,则该几何体是() A. B. C. D.【答案】C【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到图形.依题意,由几何体的主视图即可判断该几何体的形状.【详解】解:由该几何体的主视图可知,该几何体是选项C中的图形. 故选:C.【点睛】本题考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也考查了空间想象能力.3.如图,小明从入口进入博物馆参观,参观后可从,,三个出口走出,他恰好从出口走出的概率是()A. B. C. D.【答案】B【解析】【分析】此题根据事件的三种可能性即可确定答案【详解】当从A口进,出来时有三种可能性即:B,C,D;恰好从C口走出的可能性占总的,故概率为;故答案选:B;【点睛】此题考查事件的可能性,根据事件发生的所有可能确定概率即可.4.我国天问一号火星探测器于2021年5月15日成功着陆火星表面.经测算,地球跟火星最远距离千米,其中用科学记数法表示为()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将这个数用科学记数法表示为:.故选:C.【点睛】此题考查了科学记数法,熟练掌握科学记数法的基本要求并正确确定a及n的值是解题的关键.5.如图是某市一天的气温随时间变化的情况,下列说法正确的是()A.这一天最低温度是-4℃ B.这一天12时温度最高 C.最高温比最低温高8℃ D.0时至8时气温呈下降趋势【答案】A【解析】【分析】根据气温变化图逐项进行判断即可求解.【详解】解:A.这一天最低温度是,原选项判断正确,符合题意;B.这一天14时温度最高,原选项判断错误,不合题意;C.这一天最高气温8℃,最低气温-4℃,最高温比最低温高,原选项判断错误,不合题意;D.时至时气温呈先下降在上升趋势,原选项判断错误,不合题意.故选:A【点睛】本题考查了根据函数图象读取信息,理解气温随时间变化而变化并从中读取信息是解题关键.6.下列运算正确的是()A. B. C. D.【答案】A【解析】【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解.【详解】解:A.,原选项计算正确,符合题意;B.,原选项计算错误,不合题意;C.,原选项计算错误,不合题意;D.,不是同类项,无法相减,原选项计算错误,不合题意.故选:A【点睛】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减等知识,熟知相关运算公式和法则是解题关键.7.平面直角坐标系内与点关于原点对称的点的坐标是()A. B. C. D.【答案】B【解析】【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,可以直接得到答案.【详解】解:∵P(3,4),∴关于原点对称点的坐标是(-3,-4),故选B.【点睛】此题主要考查了原点对称的点的坐标特点,关键是掌握坐标的变化规律:两个点关于原点对称时,它们的坐标符号相反.8.如图,的半径为,于点,,则的长是()A. B. C. D.【答案】C【解析】【分析】根据圆周角定理求出∠COB的度数,再求出∠OBD的度数,根据“30°的锐角所对的直角边等于斜边的一半”求出OD的长度.【详解】∵∠BAC=30°,∴∠COB=60°,∵∠ODB=90°,∴∠OBD=30°,∵OB=4,∴OD=OB==2.故选:C.【点睛】本题考查了圆周角定理,直角三角形的性质,掌握相关定理和性质是解题的关键.9.一次函数y=2x+1的图像不经过(   )A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D【解析】【分析】根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】∵k=2>0,b=1>0,∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.10.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若人坐一辆车,则两辆车是空的;若人坐一辆车,则人需要步行.问:人与车各多少?设有辆车,人数为,根据题意可列方程组为()A. B. C. D.【答案】B【解析】【分析】设有辆车,人数为,根据“如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设有辆车,人数为人,依题意得:,故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.11.如图,矩形纸片,,点,分别在,上,把纸片如图沿折叠,点,的对应点分别为,,连接并延长交线段于点,则的值为()A. B. C. D.【答案】A【解析】【分析】根据折叠性质则可得出是的垂直平分线,则由直角三角形性质及矩形性质可得∠AEO=∠AGD,∠FHE=∠D=90°,根据相似三角形判定推出△EFH∽△GAD,再利用矩形判定及性质证得FH=AB,即可求得结果.【详解】解:如图,过点F作FH⊥AD于点H,∵点,的对应点分别为,,∴,,∴EF是AA'的垂直平分线.∴∠AOE=90°.∵四边形是矩形,∴∠BAD=∠B=∠D=90°.∴∠OAE+∠AEO=∠OAE+∠AGD,∴∠AEO=∠AGD.∵FH⊥AD,∴∠FHE=∠D=90°.∴△EFH∽△GAD.∴.∵∠AHF=∠BAD=∠B=90°,∴四边形ABFH是矩形.∴FH=AB.∴;故选:A.【点睛】本题考查了矩形的折叠问题,掌握折叠的性质、矩形及相似三角形的判定与性质是解题的关键.12.定义一种运算:,则不等式的解集是()A.或 B. C.或 D.或【答案】C【解析】【分析】根据新定义运算规则,分别从和两种情况列出关于x的不等式,求解后即可得出结论.【详解】解:由题意得,当时,即时,,则,解得,∴此时原不等式的解集为;当时,即时,,则,解得,∴此时原不等式的解集为;综上所述,不等式的解集是或.故选:C.【点睛】本题主要考查解一元一次不等式,解题的关键是根据新定义运算规则列出关于x的不等式.二、填空题(本大题共6小题,共18分)13.要使分式有意义,则x的取值范围是_______.【答案】x≠2【解析】【分析】分式有意义,则分母x-2≠0,由此易求x的取值范围.【详解】解:当分母x-2≠0,即x≠2时,分式有意义.故答案为:x≠2.【点睛】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14.分解因式:______.【答案】【解析】【分析】利用平方差公式进行因式分解即可.【详解】解:=.故答案为.【点睛】本题考查了因式分解.熟练掌握平方差公式是解题的关键.15.如图,从楼顶处看楼下荷塘处的俯角为,看楼下荷塘处的俯角为,已知楼高为米,则荷塘的宽为__________米.(结果保留根号)【答案】【解析】【分析】由三角函数分别求出BC、BD,即可得出CD的长.【详解】解:由题意知:∠BAC=90°-45°=45°,△ABC是直角三角形, 在Rt△ABC中,tan∠BAC=,AB=30米, ∴BC=AB•tan45°=30米, ∵∠BAD=90°-60°=30°,tan∠BAD=, ∴BD=AB•tan30°=(米), ∴CD=BC-BD=(米);故答案为:.【点睛】本题考查了解直角三角形的应用,由三角函数求出BC和BD是解决问题的关键解题的关键.16.为了庆祝中国共产党成立周年,某校举行“党在我心中”演讲比赛,评委将从演讲内容,演讲能力,演讲效果三个方面给选手打分,各项成绩均按百分制计,然后再按演讲内容占,演讲能力占,演讲效果占,计算选手的综合成绩(百分制).小婷的三项成绩依次是,,,她的综合成绩是__________.【答案】89【解析】【分析】根据加权平均数的定义列式计算可得.【详解】解:选手甲的综合成绩为(分,故答案为:89分.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.17.如图,从一块边长为,的菱形铁片上剪出一个扇形,这个扇形在以为圆心的圆上(阴影部分),且圆弧与,分别相切于点,,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径是__________. 【答案】【解析】【分析】先利用菱形的性质得到含30°角的直角三角形,再利用勾股定理求出AE,最后利用弧长公式求出弧长,弧长即为圆锥底面圆的周长,再利用周长公式即可求半径.【详解】解:如图,连接AE,由切线性质可知:AE⊥BC,即∠AEB=90°;∵菱形铁片上∠BAD=120°,∴∠B=180°-120°=60°,∴∠BAE=30°,∴AB=2BE=2,∴BE=1,∵,∴,∴扇形的弧长为:,所以圆锥底面圆半径为:,故答案为:. 【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质、勾股定理、弧长公式等内容,解决本题的关键是牢记相关性质与公式,本题需要学生理解扇形与圆锥的关系,蕴含了一定的空间想象思维,涉及到了数形结合等思想方法.18.如图,已知点,,两点,在抛物线上,向左或向右平移抛物线后,,的对应点分别为,,当四边形的周长最小时,抛物线的解析式为__________.【答案】.【解析】【分析】先通过平移和轴对称得到当B、E、三点共线时,的值最小,再通过设直线的解析式并将三点坐标代入,当时,求出a的值,最后将四边形周长与时的周长进行比较,确定a的最终取值,即可得到平移后的抛物线的解析式.【详解】解:∵,,,,∴,,由平移的性质可知:,∴四边形的周长为;要使其周长最小,则应使的值最小;设抛物线平移了a个单位,当a>0时,抛物线向右平移,当a<0时,抛物线向左平移;∴,,将向左平移2个单位得到,则由平移的性质可知:,将关于x轴的对称点记为点E,则,由轴对称性质可知,,∴,当B、E、三点共线时,的值最小, 设直线的解析式为:,∴,当时,∴∴,将E点坐标代入解析式可得:,解得:,此时,此时四边形的周长为;当时,,,,,此时四边形的周长为:;∵,∴当时,其周长最小,所以抛物线向右平移了个单位,所以其解析式为:;故答案为:.【点睛】本题综合考查了平移、轴对称、一次函数的应用、勾股定理、抛物线的解析式等内容,解决本题的关键是理解并确定什么情况下该四边形的周长最短,本题所需综合性思维较强,对学生的综合分析和计算能力要求都较高,本题蕴含了数形结合与分类讨论的思想方法等.三、解答题(本大题共8小题,共66分)19.计算:.【答案】-2【解析】【分析】先分别计算出有理数的乘方及括号内的有理数加减,再计算乘除,即可求得结果.【详解】解:.【点睛】此题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序及相关运算法则是解答此题的关键.20.解分式方程:.【答案】【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母,得,解此方程,得,经检验,是原分式方程的根.【点睛】本题考查了解分式方程,解分式方程的关键是将分式方程转化为整式方程,不要忘记检验.21.如图,四边形中,,,连接. (1)求证:;(2)尺规作图:过点作的垂线,垂足为(不要求写作法,保留作图痕

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐