2021年浙江省嘉兴市中考数学真题试卷 解析版

2023-10-31 · U1 上传 · 27页 · 470 K

2021年浙江省嘉兴市中考数学试卷一、选择题(本题有10小题,每题3分,共30分,请选出各题中唯一的正确选项,不选、多选错选,均不得分)1.2021年5月22日,我国自主研发的“祝融号”火星车成功到达火星表面.已知火星与地球的最近距离约为55000000千米,数据55000000用科学记数法表示为( )A.55×106 B.5.5×107 C.5.5×108 D.0.55×1082.如图是由四个相同的小正方体组成的立体图形,它的俯视图为( )A. B. C. D.3.能说明命题“若x为无理数,则x2也是无理数”是假命题的反例是( )A.x=﹣1 B.x=+1 C.x=3 D.x=﹣4.已知三个点(x1,y1),(x2,y2),(x3,y3)在反比例函数y=的图象上,其中x1<x2<0<x3,下列结论中正确的是( )A.y2<y1<0<y3 B.y1<y2<0<y3 C.y3<0<y2<y1 D.y3<0<y1<y25.将一张三角形纸片按如图步骤①至④折叠两次得图⑤,然后剪出图⑤中的阴影部分,则阴影部分展开铺平后的图形是( )A.等腰三角形 B.直角三角形 C.矩形 D.菱形6.5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是( )A.中位数是33℃ B.众数是33℃ C.平均数是℃ D.4日至5日最高气温下降幅度较大7.已知平面内有⊙O和点A,B,若⊙O半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为( )A.相离 B.相交 C.相切 D.相交或相切8.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为( )A.﹣=20 B.﹣=20 C.﹣=20 D.﹣=209.如图,在△ABC中,∠BAC=90°,AB=AC=5,点D在AC上,且AD=2,点E是AB上的动点,连结DE,点F,G分别是BC和DE的中点,连结AG,FG,当AG=FG时,线段DE长为( )A. B. C. D.410.已知点P(a,b)在直线y=﹣3x﹣4上,且2a﹣5b≤0,则下列不等式一定成立的是( )A.≤ B.≥ C.≥ D.≤二、填空题(本题有6小题,每题4分,共24分)11.(4分)已知二元一次方程x+3y=14,请写出该方程的一组整数解 .12.(4分)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是 .13.(4分)观察下列等式:1=12﹣02,3=22﹣12,5=32﹣22,…按此规律,则第n个等式为2n﹣1= .14.(4分)如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2,则AH的长为 .15.(4分)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为 .马匹姓名下等马中等马上等马齐王6810田忌57916.(4分)如图,在△ABC中,∠BAC=30°,∠ACB=45°,AB=2,点P从点A出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A′,连结A′C,A′P.在运动过程中,点A′到直线AB距离的最大值是 ;点P到达点B时,线段A′P扫过的面积为 .三、解答题(本题有8小题,第17~19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分)17.(6分)(1)计算:2﹣1+﹣sin30°;(2)化简并求值:1﹣,其中a=﹣.18.(6分)小敏与小霞两位同学解方程3(x﹣3)=(x﹣3)2的过程如下框:小敏:两边同除以(x﹣3),得3=x﹣3,则x=6.小霞:移项,得3(x﹣3)﹣(x﹣3)2=0,提取公因式,得(x﹣3)(3﹣x﹣3)=0.则x﹣3=0或3﹣x﹣3=0,解得x1=3,x2=0.你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.19.(6分)如图,在7×7的正方形网格中,网格线的交点称为格点,点A,B在格点上,每一个小正方形的边长为1.(1)以AB为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.20.(8分)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”,80米~100米为“冲刺期”.市田径队把运动员小斌某次百米跑训练时速度y(m/s)与路程x(m)之间的观测数据,绘制成曲线如图所示.(1)y是关于x的函数吗?为什么?(2)“加速期”结束时,小斌的速度为多少?(3)根据如图提供的信息,给小斌提一条训练建议.21.(8分)某市为了解八年级学生视力健康状况,在全市随机抽查了400名八年级学生2021年初的视力数据,并调取该批学生2020年初的视力数据,制成如图统计图(不完整):青少年视力健康标准类别视力健康状况A视力≥5.0视力正常B4.9轻度视力不良C4.6≤视力≤4.8中度视力不良D视力≤4.5重度视力不良根据以上信息,请解答:(1)分别求出被抽查的400名学生2021年初轻度视力不良(类别B)的扇形圆心角度数和2020年初视力正常(类别A)的人数.(2)若2021年初该市有八年级学生2万人,请估计这些学生2021年初视力正常的人数比2020年初增加了多少人?(3)国家卫健委要求,全国初中生视力不良率控制在69%以内.请估计该市八年级学生2021年初视力不良率是否符合要求?并说明理由.22.(10分)一酒精消毒瓶如图1,AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=6cm,BE=4cm.当按压柄△BCD按压到底时,BD转动到BD′,此时BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)23.(10分)已知二次函数y=﹣x2+6x﹣5.(1)求二次函数图象的顶点坐标;(2)当1≤x≤4时,函数的最大值和最小值分别为多少?(3)当t≤x≤t+3时,函数的最大值为m,最小值为n,若m﹣n=3,求t的值.24.(12分)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明. 2021年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分,请选出各题中唯一的正确选项,不选、多选错选,均不得分)1.2021年5月22日,我国自主研发的“祝融号”火星车成功到达火星表面.已知火星与地球的最近距离约为55000000千米,数据55000000用科学记数法表示为( )A.55×106 B.5.5×107 C.5.5×108 D.0.55×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值≥10时,n是正数.【解答】解:55000000=5.5×107.故选:B.2.如图是由四个相同的小正方体组成的立体图形,它的俯视图为( )A. B. C. D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形,右齐.故选:C.3.能说明命题“若x为无理数,则x2也是无理数”是假命题的反例是( )A.x=﹣1 B.x=+1 C.x=3 D.x=﹣【分析】根据题意,只要x2是有理数,即求出各个选项中x2的值,再判断即可.【解答】解:(﹣1)2=3﹣2,是无理数,不符合题意;(+1)2=3+2,是无理数,不符合题意;(3)2=18,是有理数,符合题意;(﹣)2=5﹣2,是无理数,不符合题意;故选:C.4.已知三个点(x1,y1),(x2,y2),(x3,y3)在反比例函数y=的图象上,其中x1<x2<0<x3,下列结论中正确的是( )A.y2<y1<0<y3 B.y1<y2<0<y3 C.y3<0<y2<y1 D.y3<0<y1<y2【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x3即可得出结论【解答】解:∵反比例函数y=中,k=2>0,∴函数图象的两个分支分别位于一、三象限,且在每一象限内,y随x的增大而减小.∵x1<x2<0<x3,∴A、B两点在第三象限,C点在第一象限,∴y2<y1<0<y3.故选:A.5.将一张三角形纸片按如图步骤①至④折叠两次得图⑤,然后剪出图⑤中的阴影部分,则阴影部分展开铺平后的图形是( )A.等腰三角形 B.直角三角形 C.矩形 D.菱形【分析】对折是轴对称得到的图形,根据最后得到的图形可得是沿对角线折叠2次后,剪去一个三角形得到的,按原图返回即可.【解答】解:如图,由题意可知,剪下的图形是四边形BACD,由折叠可知CA=AB,∴△ABC是等腰三角形,又△ABC和△BCD关于直线CD对称,∴四边形BACD是菱形,故选:D.6.5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是( )A.中位数是33℃ B.众数是33℃ C.平均数是℃ D.4日至5日最高气温下降幅度较大【分析】分别确定7个数据的中位数、众数及平均数后即可确定正确的选项.【解答】解:A、7个数排序后为23,25,26,27,30,33,33,位于中间位置的数为27,所以中位数为27℃,故A错误,符合题意;B、7个数据中出现次数最多的为33,所以众数为33℃,正确,不符合题意;C、平均数为(23+25+26+27+30+33+33)=,正确,不符合题意;D、观察统计表知:4日至5日最高气温下降幅度较大,正确,不符合题意,故选:A.7.已知平面内有⊙O和点A,B,若⊙O半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为( )A.相离 B.相交 C.相切 D.相交或相切【分析】根据点与圆的位置关系的判定方法进行判断.【解答】解:⊙O的半径为2cm,线段OA=3cm,OB=2cm,即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,∴点A在⊙O外,点B在⊙O上,∴直线AB与⊙O的位置关系为相交或相切,故选:D.8.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为( )A.﹣=20 B.﹣=20 C.﹣=20 D.﹣=20【分析】若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据等量关系“缤纷棒比荧光棒少20根”可列方程即可.【解答】解:若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据题意可得:﹣=20.故选:B.9.如图,在△ABC中,∠BAC=90°,AB=AC=5,点D在AC上,且AD=2,点E是AB上的动点,连结DE,点F,G分别是BC和DE的中点,连结AG

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐