2014年四川省泸州市中考数学试卷一、选择题(本大题共12小题,每题3分,共36分.只有一项是符合题目要求的.)1.5的倒数为( ) A.B.5C.D.﹣53.如图的几何图形的俯视图为( ) A.B.C.D.5.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为( ) A.30°B.60°C.120°D.150°6.已知实数x、y满足+|y+3|=0,则x+y的值为( ) A.﹣2B.2C.4D.﹣47.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为( ) A.9cmB.12cmC.15cmD.18cm8.已知抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是( ) A.B.C.D.9.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是( )10.如图,⊙O1,⊙O2的圆心O1,O2都在直线l上,且半径分别为2cm,3cm,O1O2=8cm.若⊙O1以1cm/s的速度沿直线l向右匀速运动(⊙O2保持静止),则在7s时刻⊙O1与⊙O2的位置关系是( ) A.外切B.相交C.内含D.内切11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是( ) A.B.C.D.12.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是( ) A.4B.C.D. 二、填空题(本大题共4小题,每小题3分,共12分.请将最后答案直接填在题中横线上.)13.分解因式:3a2+6a+3= .14.使函数y=+有意义的自变量x的取值范围是 .15.一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为 .16.(3分)(2014•泸州)如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B、C重合),过点F的反比例函数的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DE•EG=,则k=1.其中正确的命题的序号是 (写出所有正确命题的序号). 三、(本大题共3小题,每题6分,共18分)17.(6分)(2014•泸州)计算:﹣4sin60°+(π+2)0+()﹣2. 18.(6分)(2014•泸州)计算(﹣)÷. 19.(6分)(2014•泸州)如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF. 四、(本大题共1小题,每题7分,共14分)20.(7分)(2014•泸州)某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求出x的值,并将不完整的条形统计图补充完整;(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率. 五、(本大题共3小题,每题8分,共16分)21.(7分)(2014•泸州)某工厂现有甲种原料280千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y元,其中A种产品生产件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值. 22.(8分)(2014•泸州)海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值) 23.(8分)(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长. 六、(本大题共2小题,每小题12分,共24分)24.(12分)(2014•泸州)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长. 25.(12分)(2014•泸州)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程=0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.2014年四川省泸州市中考数学试卷 参考答案与试题解析一、选择题(本大题共12小题,每题3分,共36分.只有一项是符合题目要求的.)1.5的倒数为( ) A.B.5C.D.﹣5解答:解:5的倒数是,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.计算x2•x3的结果为( ) A.2x2B.x5C.2x3D.x6解答:解:原式=x2+3=x5.故选:B.点评:本题考查了同底数幂的乘法,底数不变指数相加是解题关键. 3.如图的几何图形的俯视图为( ) A.B.C.D.解答:解:从上面看:里边是圆,外边是矩形,故选:C.点评:本题考查了简单组合体的三视图,注意所有的看到的棱都应表现在俯视图中. 4.某校八年级(2)班5名女同学的体重(单位:kg)分别为35,36,40,42,42,则这组数据的中位数是( ) A.38B.39C.40D.42解答:解:题目中数据共有5个,中位数是按从小到大排列后第3个数作为中位数,故这组数据的中位数是40.故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数,比较简单.5.如图,等边△ABC中,点D、E分别为边AB、AC的中点,则∠DEC的度数为( ) A.30°B.60°C.120°D.150°解答:解:由等边△ABC得∠C=60°,由三角形中位线的性质得DE∥BC,∠DEC=180°﹣∠C=180°﹣60°=120°,故选:C.点评:本题考查了三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半. 6.已知实数x、y满足+|y+3|=0,则x+y的值为( ) A.﹣2B.2C.4D.﹣4解答:解:∵+|y+3|=0,∴x﹣1=0,y+3=0;∴x=1,y=﹣3,∴原式=1+(﹣3)=﹣2故选:A.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0. 7.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为( ) A.9cmB.12cmC.15cmD.18cm解答:解:圆锥的母线长=2×π×6×=12cm,故选B.点评:本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.8.已知抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,则函数y=的大致图象是( ) A.B.C.D.解答:解:抛物线y=x2﹣2x+m+1与x轴有两个不同的交点,∴△=(﹣2)2﹣4(m+1)>0解得m<0,∴函数y=的图象位于二、四象限,故选:A.点评:本题考查了反比例函数图象,先求出m的值,再判断函数图象的位置. 9.“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是( ) A.2小时B.2.2小时C.2.25小时D.2.4小时解答:解:设AB段的函数解析式是y=kx+b,y=kx+b的图象过A(1.5,90),B(2.5,170),,解得∴AB段函数的解析式是y=80x﹣30,离目的地还有20千米时,即y=170﹣20=150km,当y=150时,80x﹣30=150x=2.25h,故选:C.点评:本题考查了一次函数的应用,利用了待定系数法求解析式,利用函数值求自变量的值. 10.如图,⊙O1,⊙O2的圆心O1,O2都在直线l上,且半径分别为2cm,3cm,O1O2=8cm.若⊙O1以1cm/s的速度沿直线l向右匀速运动(⊙O2保持静止),则在7s时刻⊙O1与⊙O2的位置关系是( ) A.外切B.相交C.内含D.内切解答:解:∵O1O2=8cm,⊙O1以1cm/s的速度沿直线l向右运动,7s后停止运动,∴7s后两圆的圆心距为:1cm,此时两圆的半径的差为:3﹣2=1cm,∴此时内切,故选D.点评:本题考查了圆与圆的位置关系,解题的关键是根据圆的移动速度确定两圆的圆心距,然后根据圆心距和两圆的半径确定答案. 11.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是( ) A.B.C.D.解答:解:作FG⊥AB于点G,∵∠DAB=90°,∴AE∥FG,∴=,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在RT△BGF和RT△BCF中,∴RT△BGF≌RT△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=BC,∴====+1.故选:C.点评:本题主要考查了平行线分线段成比例,全等三角形及角平分线的知识,解题的关键是找出线段之间的关系,CB=GB,AB=BC再利用比例式求解.. 12.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是( ) A.4B.C.D.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=
2014年四川省泸州市中考数学试卷(含解析版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片