高考数学专题07 数列专题(数学文化)(解析版)

2023-11-14 · U1 上传 · 40页 · 2 M

专题07数列专题(数学文化)一、单选题1.(2022·全国·高三专题练习)《周髀算经》有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为(一丈=十尺=一百寸)(    ).A.一尺五寸 B.二尺五寸 C.三尺五寸 D.四尺五寸【答案】B【分析】十二个节气日影长构成一个等差数列,利用等差数列通项公式、前项和公式列出方程组,求出首项和公差,由此能求出芒种日影长.【详解】由题意知:从冬至日起,依次小寒、大寒等十二个节气日影长构成一个等差数列,设公差为,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,,解得,,芒种日影长为(寸)尺5寸.故选:B2.(2022秋·陕西咸阳·高二武功县普集高级中学校考阶段练习)河南洛阳龙门石窟是中国石刻艺术宝库,现为世界非物质文化遗产之一.某洞窟的浮雕共层,它们构成一幅优美的图案.若从下往上计算,从第二层开始,每层浮雕像的个数依次是下层个数的倍,且第三层与第二层浮雕像个数的差是,则该洞窟的浮雕像的总个数为(    )A. B. C. D.【答案】A【分析】设从上到下第层的浮雕像个数为,分析可知数列为等比数列,且公比为,根据已知条件求出的值,利用等比数列求和公式可求得结果.【详解】设从上到下第层的浮雕像个数为,由题意可知,数列为等比数列,且该数列的公比为,由已知可得,可得,故,因此,该洞窟的浮雕像的总个数为.故选:A.3.(2022秋·广东广州·高二华南师大附中校考阶段练习)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为(    )A.5 B.10 C.15 D.30【答案】B【分析】设五个人所分得的面包为,,,,,(其中),则由总和为100可求得,再由较大的三份之和的是较小的两份之和,可得,从而可求出,进而可求出【详解】设五个人所分得的面包为,,,,,(其中),则有,∴,由,得;∴,∴.∴最少的一份为.故选:B4.(2022·河北邯郸·统考模拟预测)位于丛台公园内的武灵丛台已经成为邯郸这座三千年古城的地标建筑,丛台上层建有据胜亭,其顶部结构的一个侧面中,自上而下第一层有块筒瓦,以下每一层均比上一层多块筒瓦,如果侧面共有层筒瓦且顶部个侧面结构完全相同,顶部结构共有多少块筒瓦?(    )A. B. C. D.【答案】C【分析】由题意知每层筒瓦数构成等差数列,由等差数列求和公式可求得每一面的筒瓦总数,由此可得四个侧面筒瓦总数.【详解】一个侧面中,第一层筒瓦数记为,自上而下,由于下面每一层比上一层多块筒瓦,每层筒瓦数构成等差数列,其中,.一个侧面中共有层筒瓦,一个侧面筒瓦总数是,顶层四个侧面筒瓦数总和为.故选:C.5.(2023·全国·高三专题练习)如图1,洛书是一种关于天地空间变化脉络的图案,2014年正式入选国家级非物质文化遗产名录,其数字结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,形成图2中的九宫格,将自然数1,2,3,…,放置在n行n列的正方形图表中,使其每行、每列、每条对角线上的数字之和(简称“幻和”)均相等,具有这种性质的图表称为“n阶幻方”.洛书就是一个3阶幻方,其“幻和”为15.则7阶幻方的“幻和”为(    )图1图2A.91 B.169 C.175 D.180【答案】C【分析】根据“幻和”的定义,将自然数1至累加除以n即可得结果.【详解】由题意,7阶幻方各行列和,即“幻和”为.故选:C6.(2022·全国·高三专题练习)斐波那契数列,又称黄金分割数列,该数列在现代物理、准晶体结构、化学等领域有着非常广泛的应用,在数学上,斐波那契数列是用如下递推方法定义的:已知   是该数列的第100项,则m=(    )A.98 B.99C.100 D.101【答案】B【分析】根据题意推出,,,,利用累加法可得,即可求出m的值.【详解】由题意得,,因为,得,,,,累加,得,因为是该数列的第100项,即是该数列的第100项,所以.故选:B.7.(2022春·河南南阳·高二校联考阶段练习)南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第50层球的个数为(    )A.1255 B.1265C.1275 D.1285【答案】C【分析】根据题中给出的图形,结合题意找到各层球的个数与层数的关系,得到,进而求解结论.【详解】解:设各层球的个数构成数列,由题意可知,,,,,,故,,故选:C.8.(2022秋·江苏南通·高三江苏省如皋中学统考阶段练习)1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间平均分成三段,去掉中间的一段,剩下两个闭区间和;第二步,将剩下的两个闭区间分别平均分为三段,各自去掉中间的一段,剩下四段闭区间:,,,;如此不断的构造下去,最后剩下的各个区间段就构成了三分康托集.若经历步构造后,不属于剩下的闭区间,则的最小值是(    ).A.7 B.8 C.9 D.10【答案】A【分析】根据三分康托集的构造过程可知:经历第步,每个去掉的开区间以及留下的闭区间的区间长度都是,根据规律即可求出属于,进而根据不等式可求解.【详解】不属于剩下的闭区间,属于去掉的开区间经历第步,剩下的最后一个区间为,经历第步,剩下的最后一个区间为,……,经历第步,剩下的最后一个区间为,去掉的最后开区间为由化简得,解得故选:A9.(2022春·江苏南通·高二统考期末)“埃拉托塞尼筛法”是保证能够挑选全部素数的一种古老的方法.这种方法是依次写出2和2以上的自然数,留下头一个2不动,剔除掉所有2的倍数;接着,在剩余的数中2后面的一个数3不动,剔除掉所有3的倍数;接下来,再在剩余的数中对3后面的一个数5作同样处理;……,依次进行同样的剔除.剔除到最后,剩下的便全是素数.在利用“埃拉托塞尼筛法”挑选2到30的全部素数过程中剔除的所有数的和为(    )A.333 B.335 C.337 D.341【答案】B【分析】根据给定条件,求出2到30的全部整数和,再求出2到30的全部素数和即可计算作答.【详解】2到30的全部整数和,2到30的全部素数和,所以剔除的所有数的和为.故选:B10.(2022·全国·高三专题练习)谈祥柏先生是我国著名的数学科普作家,在他的《好玩的数学》一书中,有一篇文章《五分钟挑出埃及分数》,文章告诉我们,古埃及人喜欢使用分子为的分数(称为埃及分数).则下列埃及分数、、、、的和是(    )A. B. C. D.【答案】C【分析】利用裂项相消法可求得结果.【详解】当时,,因此,.故选:C.11.(2022春·四川资阳·高一统考期末)《算法统宗》是中国古代数学名著,书中有这样一个问题:九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次弟,孝和休惹外人传.意为:996斤棉花,分别赠送给8个子女做旅费,从第二个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要长幼分明,使孝顺子女的美德外传.据此,前五个孩子共分得的棉花斤数为(    )A.362 B.430 C.495 D.645【答案】C【分析】设这八个孩子分得棉花的斤数构成等差数列,由题设求得其首项与公差,即可求得结果.【详解】解:设这八个孩子分得棉花的斤数构成等差数列,由题意知:公差,又,解得,故.故选:C.12.(2022秋·江苏淮安·高三校考阶段练习)天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,2022年是壬寅年,请问:在100年后的2122年为(    )A.壬午年 B.辛丑年 C.己亥年 D.戊戌年【答案】A【分析】将天干和地支分别看作等差数列,结合,,分别求出100年后天干为壬,地支为午,得到答案.【详解】由题意得:天干可看作公差为10的等差数列,地支可看作公差为12的等差数列,由于,余数为0,故100年后天干为壬,由于,余数为4,故100年后地支为午,综上:100年后的2122年为壬午年.故选:A13.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所以论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”,现有高阶等差数列,其前6项分别为1,5,11,21,37,61,……则该数列的第8项为(    )A.99 B.131 C.139 D.141【答案】D【分析】根据题中所给高阶等差数列定义,找出其一般规律即可求解.【详解】设该高阶等差数列的第8项为,根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:根据规律补全:由图可得,则.故选:D14.(2023春·广西柳州·高三统考阶段练习)《九章算术》中有一题:今有牛、马、羊、猪食人苗,苗主责之粟9斗,猪主曰:“我猪食半羊.”羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?其意是:今有牛、马、羊、猪吃了别人的禾苗,禾苗主人要求赔偿9斗粟,猪主人说:“我猪所吃的禾苗只有羊的一半.”羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比率偿还,牛、马、羊、猪的主人各应赔偿多少粟?在这个问题中,马主人比猪主人多赔偿了(    )斗.A. B. C.3 D.【答案】B【分析】转化为等比数列进行求解,设出未知数,列出方程,求出马主人比猪主人多赔偿了斗数.【详解】由题意得:猪、羊、马、牛的主人赔偿的粟斗数成等比数列,公比为2,设猪的主人赔偿的粟斗数为,则,解得:,故马主人赔偿的粟斗数为,所以马主人比猪主人多赔偿了斗数为.故选:B15.(2021秋·河南商丘·高二校联考期中)《莉拉沃蒂》是古印度数学家婆什迦罗的数学名著,书中有下面的表述:某王为夺得敌人的大象,第一天行军由旬(由旬为古印度长度单位),以后每天均比前一天多行相同的路程,七天一共行军由旬到达地方城市.下列说法正确的是(       )A.前四天共行由旬B.最后三天共行由旬C.从第二天起,每天比前一天多行的路程为由旬D.第三天行了由旬【答案】D【分析】由题意,每天行军的路程为等差数列,且,,利用基本量表示可得,依次分析,即得解【详解】由题意,不妨设每天行军的路程为数列,则又以后每天均比前一天多行相同的路程,故构成一个等差数列,不妨设公差为七天一共行军由旬,即故,解得,A错误;,B错误;由于,故从第二天起,每天比前一天多行的路程为由旬,C错误;,D正确故选:D16.(2022·全国·高三专题练习)“垛积术”是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的.若这堆货物总价是万元,则n的值为(    )A.9 B.10 C.11 D.12【答案】B【分析】先依次求

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐