高考数学专题09 几何概型(原卷版)

2023-11-09 · U1 上传 · 6页 · 656.9 K

专题9几何概型例1.某人向直角边长分别为6和8的一个直角三角形中投掷一个点,求此点落在此直角三角形内切圆的内部的概率是 A. B. C. D.例2.某游乐场制作了如图所示的游戏盘,其中为等腰三角形,,为的中点,分别以,为圆心,,为半径画弧,交于另一点.向游戏盘内投飞镖(不考虑投不中的情况),则飞镖落入阴影部分的概率为 A. B. C. D.例3.为了估计无理数的值,采用如下做法:在直角坐标系中,作出函数的图象,在轴上分别取,两点,过点作轴的垂线交函数的图象于点,再过点作轴的垂线,与过点垂直于轴的直线交于点.然后随机地向矩形内投入粒豆子,若落在曲线上方有粒豆子,则无理数的估计值为 A. B. C. D.例4.如图,点的坐标为,点的坐标为,函数,若在矩形内随机取一点,则此点取自阴影部分的概率等于 A. B. C. D.例5.《定理汇编》是一本十分重要的书籍,其中有一些定理是关于鞋匠刀形的,即由在同一直线上的三个半圆圆,圆,圆围成的图形被阿基米德称为鞋匠刀形,其半径分别为,,,如图所示,在大半圆内随机取一点,此点取自阴影部分的概率为,则的值为 A. B. C. D.例6.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深对今天的几何学和其他学科仍有深刻的影响.如图就是《易经》中记载的几何图形八卦图.图中正八边形代表八卦,中间的圆代表阴阳太极图,图中八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为,代表阴阳太极图的圆的半径为,在正八边形内随机取一点,则此点取自黑色部分的概率是 A. B. C. D.例7.如图是数学界研究的弓月形的一种,,,是以为直径的圆的内接正六边形的三条邻边,四个半圆的直径分别是,,,,在整个图形中随机取一点,则此点取自阴影部分的概率是 A. B. C. D.例8.欧几里得是希腊论证几何学的集大成者,在其所著的《几何原本》中命题:在直角三角形中以斜边为边的正方形面积等于以两直角边为边的正方形面积之和(两直角边的平方和等于斜边的平方),这其实就是大家熟知的勾股定理,如图是《几何原本》中证明的图示,在中,,,,若在四边形中任取一点,则该点落在四边形中的概率是 A. B. C. D.例9.已知正方形中,点为边的中点,若在正方形内部随机取一个点,则点取自内部的概率为 A. B. C. D.例10.《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为,正方形的边长为,若在圆内随机取点,得到点取自阴影部分的概率是,则圆周率的值为 A. B. C. D.例11.在区间上随机地取一个数,则事件“”发生的概率为 A. B. C. D.例12.魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”(如图),刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为.在某一球内任意取一点,则此点取自球的一个内接正方体的“牟合方盖”的概率为 A. B. C. D.例13.赵爽是我国古代数学家、天文学家,赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形内随机取一点,则此点取自小等边三角形内的概率是 A. B. C. D.例14.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆内的概率是 A. B. C. D.例15.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请100名同学每人随机写下一个,都小于1的正实数对;再统计两数能与1构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,假如某次统计结果是,那么本次实验可以估计的值为 A. B. C. D.例16.圆周率是圆的周长与直径的比值,一般用希腊字母表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第7位的人,这比欧洲早了约1000年.生活中,我们也可以通过如下随机模拟试验来估计的值:在区间内随机取个数,构成个数对,设,能与1构成钝角三角形三边的数对有对,则通过随机模拟的方法得到的的近似值为 A. B. C. D.例17.从区间,内随机抽取个数,,,,,构成个数对,,,,,其中两数的平方和不小于1的数对共有个,则用随机模拟的方法得到圆周率的近似值为 A. B. C. D.例18.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生2000个数对,其中,都是区间上的均匀随机数,再统计,能与1构成锐角三角形三边长的数对的个数;最后根据统计数来估计的值.若,则的估计值为 A.3.12 B.3.13 C.3.14 D.3.15例19.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个、都小于1的正实数对;再统计、两数能与1构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,假如统计结果是,那么可以估计的值约为 A. B. C. D.例20.如图是一个圆形射击靶的示意图,靶心为圆心,半径为2分米.一名运动员在练习射击的时候,在靶上画了一个标志胜利的“”形轴对称图案,其中,点,在圆形靶的边缘上,点与靶的边缘的最短距离为1分米.该运动员朝靶上任意射击一次,没有脱靶,则命中靶中“”形图案的概率为 .例21.如图所示,点在以为直径的半圆弧上运动,则的最小内角不小于的概率为 .例22.已知直线与曲线,在曲线上随机取一点,则点到直线的距离不大于的概率为 .例23.已知集合,,点的坐标为,则当时,且满足的概率为 .

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐