专题09 函数的最值考点一 求已知函数的最值【方法总结】导数法求给定区间上函数的最值问题的一般步骤(1)求函数f(x)的导数f′(x);(2)求f(x)在给定区间上的单调性和极值;(3)求f(x)在给定区间上的端点值;(4)将f(x)的各极值与f(x)的端点值进行比较,确定f(x)的最大值与最小值;(5)反思回顾,查看关键点,易错点和解题规范.【例题选讲】[例1](1)函数f(x)=lnx-x在区间(0,e]上的最大值为________.答案 -1 解析 f′(x)=eq\f(1,x)-1,令f′(x)=0得x=1.当x∈(0,1)时,f′(x)>0;当x∈(1,e]时,f′(x)<0.∴当x=1时,f(x)取得最大值,且f(x)max=f(1)=ln1-1=-1.(2)函数f(x)=eq\f(1,2)x2+x-2lnx的最小值为.答案 eq\f(3,2) 解析 因为f′(x)=x+1-eq\f(2,x)=eq\f((x+2)(x-1),x)(x>0),所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以f(x)min=f(1)=eq\f(1,2)+1=eq\f(3,2).(3)已知函数f(x)=eq\f(1,3)x3+mx2+nx+2,其导函数f′(x)为偶函数,f(1)=-eq\f(2,3),则函数g(x)=f′(x)ex在区间[0,2]上的最小值为.答案 -2e 解析 由题意可得f′(x)=x2+2mx+n,∵f′(x)为偶函数,∴m=0,故f(x)=eq\f(1,3)x3+nx+2,∵f(1)=eq\f(1,3)+n+2=-eq\f(2,3),∴n=-3.∴f(x)=eq\f(1,3)x3-3x+2,则f′(x)=x2-3.故g(x)=ex(x2-3),则g′(x)=ex(x2-3+2x)=ex(x-1)·(x+3),据此可知函数g(x)在区间[0,1)上单调递减,在区间(1,2]上单调递增,故函数g(x)的极小值,即最小值为g(1)=e1·(12-3)=-2e.(4)已知函数f(x)=2sinx+sin2x,则f(x)的最小值是________.答案 -eq\f(3\r(3),2) 解析 ∵f(x)的最小正周期T=2π,∴求f(x)的最小值相当于求f(x)在[0,2π]上的最小值.f′(x)=2cosx+2cos2x=2cosx+2(2cos2x-1)=4cos2x+2cosx-2=2(2cosx-1)(cosx+1).令f′(x)=0,解得cosx=eq\f(1,2)或cosx=-1,x∈[0,2π].∴由cosx=-1,得x=π;由cosx=eq\f(1,2),得x=eq\f(5,3)π或x=eq\f(π,3).∵函数的最值只能在导数值为0的点或区间端点处取到,f(π)=2sinπ+sin2π=0,feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,3)))=2sineq\f(π,3)+sineq\f(2π,3)=eq\f(3\r(3),2),feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,3)π))=-eq\f(3\r(3),2),f(0)=0,f(2π)=0,∴f(x)的最小值为-eq\f(3\r(3),2).(5)设正实数x,则f(x)=eq\f(ln2x,xlnx)的值域为________.答案 eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(1,e))) 解析 令lnx=t,则x=et,∴g(t)=eq\f(t2,et2),令t2=m,m≥0,∴h(m)=eq\f(m,em),∴h′(m)=eq\f(em(1-m),e2m),令h′(m)=0,解得m=1,当0≤m<1时,h′(m)>0,函数h(m)单调递增,当m≥1时,h′(m)<0,函数h(m)单调递减,∴h(m)max=h(1)=eq\f(1,e),∵f(0)=0,当m→+∞时,h(m)→0,∴f(x)=eq\f(ln2x,xlnx)的值域为eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(1,e))).(6)已知函数f(x)=elnx和g(x)=x+1的图象与直线y=m的交点分别为P(x1,y1),Q(x2,y2),则x1-x2的取值范围是( )A.[1,+∞) B.[2,+∞) C.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(1,2),+∞)) D.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(3,2),+∞))答案 A 解析 由题意知f(x1)=g(x2),所以elnx1=x2+1,即x2=elnx1-1,则x1-x2=x1-elnx1+1,x1>0.令h(x)=x-elnx+1(x>0),则h′(x)=1-eq\f(e,x)=eq\f(x-e,x).当x>e时,h′(x)>0,当0
专题09 函数的最值(解析版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片