2017年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2023-10-27 · U3 上传 · 31页 · 425 K

2017年全国统一高考数学试卷理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(5分)=( )A.1+2i B.1﹣2i C.2+i D.2﹣i 2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=( )A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5} 3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A.1盏 B.3盏 C.5盏 D.9盏 4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90π B.63π C.42π D.36π 5.(5分)设x,y满足约束条件,则z=2x+y的最小值是( )A.﹣15 B.﹣9 C.1 D.9 6.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种 B.18种 C.24种 D.36种 7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=( )A.2 B.3 C.4 D.5 9.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为( )A.2 B. C. D. 10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )A. B. C. D. 11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为( )A.﹣1 B.﹣2e﹣3 C.5e﹣3 D.1 12.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是( )A.﹣2 B.﹣ C.﹣ D.﹣1 二、填空题:本题共4小题,每小题5分,共20分。13.(5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX= .14.(5分)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是 .15.(5分)等差数列{an}的前n项和为Sn,a3=3,S4=10,则= .16.(5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|= .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分。17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.0100.001k3.8416.63510.828K2=.19.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值. [选修4-5:不等式选讲](10分)23.已知a>0,b>0,a3+b3=2.证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2. 2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(5分)=( )A.1+2i B.1﹣2i C.2+i D.2﹣i 【考点】A5:复数的运算.菁优网版权所有【专题】11:计算题.【分析】分子和分母同时乘以分母的共轭复数,再利用虚数单位i的幂运算性质,求出结果.【解答】解:===2﹣i,故选:D.【点评】本题考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,两个复数相除,分子和分母同时乘以分母的共轭复数. 2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=( )A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5} 【考点】1E:交集及其运算.菁优网版权所有【专题】34:方程思想;4O:定义法;5J:集合.【分析】由交集的定义可得1∈A且1∈B,代入二次方程,求得m,再解二次方程可得集合B.【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.【点评】本题考查集合的运算,主要是交集的求法,同时考查二次方程的解法,运用定义法是解题的关键,属于基础题. 3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A.1盏 B.3盏 C.5盏 D.9盏 【考点】89:等比数列的前n项和.菁优网版权所有【专题】34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,利用等比数列前n项和公式列出方程,能求出结果.【解答】解:设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,∴S7==381,解得a1=3.故选:B.【点评】本题考查等比数列的首项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用. 4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90π B.63π C.42π D.36π 【考点】L!:由三视图求面积、体积.菁优网版权所有【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题. 5.(5分)设x,y满足约束条件,则z=2x+y的最小值是( )A.﹣15 B.﹣9 C.1 D.9 【考点】7C:简单线性规划.菁优网版权所有【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最小值即可.【解答】解:x、y满足约束条件的可行域如图:z=2x+y经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y的最小值是:﹣15.故选:A.【点评】本题考查线性规划的简单应用,考查数形结合以及计算能力. 6.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种 B.18种 C.24种 D.36种 【考点】D9:排列、组合及简单计数问题.菁优网版权所有【专题】11:计算题;49:综合法;5O:排列组合.【分析】把工作分成3组,然后安排工作方式即可.【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.【点评】本题考查排列组合的实际应用,注意分组方法以及排列方法的区别,考查计算能力. 7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 【考点】F4:进行简单的合情推理.菁优网版权所有【专题】2A:探究型;35:转化思想;48:分析法;5M:推理和证明.【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案【解答】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩,给甲看乙丙成绩,甲不知道自已的成绩,说明乙丙一优一良,假定乙丙都是优,则甲是良,假定乙丙都是良,则甲是优,那么甲就知道自已的成绩了.给乙看丙成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了故选:D.【点评】本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,属于中档题. 8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=( )A.2 B.3 C.4 D.5 【考点】EF:程序框图.菁优网版权所有【专题】11:计算题;27:图表型;4B:试验法;5K:算法和程序框图.【分析】执行程序框图,依次写出每次循环得到的S,K值,当K=7时,程序终止即可得到结论.【解答】解:执行程序框图,有S=0,K=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐