2008年江西高考理科数学真题及答案

2023-10-27 · U3 上传 · 12页 · 1.6 M

准考证号姓名(在此卷上答题无效)绝密★启用前2008年江西高考理科数学真题及答案试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A、B互斥,那么球的表面积公式P(A+B)=P(A)+P(B)S=4πR2如果事件A、B相互独立,那么其中R表示球的半径P(A·B)=P(A)·P(B)球的体积公式如果事件A在一次试验中发生的概率是P,那么V=πR3n次独立重复试验中恰好发生k次的概率其中R表示球的半径Pn(k)=CP(1一P)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.定义集合运算:.设,则集合的所有元素之和为A.0B.2C.3D.63.若函数的值域是,则函数的值域是A.[,3]B.[2,]C.[,]D.[3,]4.=A.B.0C.-D.不存在5.在数列中,,则=A.B.C.D.6.函数在区间(,)内的图象大致是ABCD7.已知是椭圆的两个焦点.满足·=0的点总在椭圆内部,则椭圆离心率的取值范围是A.(0,1)B.(0,]C.(0,)D.[,1)8.(1+)6(1+)10展开式中的常数项为A.1B.46C.4245D.42469.若,且,则下列代数式中值最大的是A.B.C.D.10.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于2、4,M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB、CD可能相交于点M②弦AB、CD可能相交于点N③MN的最大值为5④MN的最小值为l其中真命题的个数为A.1个B.2个C.3个D.4个11.电子钟一天显示的时间是从00∶00到23∶59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为A.B.C.D.12.已知函数,若对于任一实数,与的值至少有一个为正数,则实数的取值范围是A.(0,2)B.(0,8)C.(2,8)D.(-∞,0)绝密★启用前第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.直角坐标平面内三点,若为线段的三等分点,则·=.14.不等式≤的解集为.15.过抛物线的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则=.16.如图1,一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有升水时,水面恰好经过正四棱锥的顶点.如果将容器倒置,水面也恰好过点(图2).有下列四个命题:A.正四棱锥的高等于正四棱柱高的一半B.将容器侧面水平放置时,水面也恰好过点C.任意摆放该容器,当水面静止时,水面都恰好经过点D.若往容器内再注入升水,则容器恰好能装满其中真命题的代号是.(写出所有真命题的代号).三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在△ABC中.a、b、c分别为角A、B、C所对的边长,a=2,tan+tan=4,sinBsinC=cos2.求A、B及b、c.18.(本小题满分12分)因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令表示方案实施两年后柑桔产量达到灾前产量的倍数.(1)写出ξ1、ξ2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?19.(本小题满分12分)等差数列各项均为正整数,,前项和为,等比数列中,,且,是公比为64的等比数列.(1)求与;(2)证明:++……+<.20.(本小题满分12分)正三棱锥的三条侧棱两两垂直,且长度均为2.分别是的中点,是的中点,过的一个平面与侧棱或其延长线分别相交于,已知.(1)证明:平面;(2)求二面角的大小.21.(本小题满分12分)设点在直线上,过点作双曲线的两条切线,切点为,定点(,0).(1)过点作直线的垂线,垂足为,试求△的重心所在的曲线方程;(2)求证:三点共线.22.(本小题满分14分)已知函数=++,x∈(0,+∞).(1)当时,求的单调区间;(2)对任意正数,证明:.参考答案选择题:本大题共12小题,每小题5分,共60分。题号123456789101112答案DDBAADCDACCB1..因所以对应的点在第四象限,2..因,3..令,则,4..5..,,…,6.D.函数7..由题知,垂足的轨迹为以焦距为直径的圆,则又,所以8..常数项为9.A.10..解:①③④正确,②错误。易求得、到球心的距离分别为3、2,若两弦交于,则⊥,中,有,矛盾。当、、共线时分别取最大值5最小值1。11..一天显示的时间总共有种,和为23总共有4种,故所求概率为.12..解:当时,显然不成立当时,因当即时结论显然成立;当时只要即可即则填空题:本大题共4小题,每小题4分,共16分。13.14.15.16.B、D13.由已知得,则14.15.16.解:真命题的代号是:BD。易知所盛水的容积为容器容量的一半,故D正确,于是A错误;水平放置时由容器形状的对称性知水面经过点P,故B正确;C的错误可由图1中容器位置向右边倾斜一些可推知点P将露出水面。解答题:本大题共6小题,共74分。17.解:由得∴∴∴,又∴由得即∴由正弦定理得18.解:(1)的所有取值为的所有取值为,、的分布列分别为:0.80.91.01.1251.25P0.20.150.350.150.150.80.961.01.21.44P0.30.20.180.240.08(2)令A、B分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件,,可见,方案二两年后柑桔产量超过灾前产量的概率更大(3)令表示方案所带来的效益,则101520P0.350.350.3101520P0.50.180.32所以可见,方案一所带来的平均效益更大。19.解:(1)设的公差为,的公比为,则为正整数,,依题意有①由知为正有理数,故为的因子之一,解①得故(2)∴20.解:(1)证明:依题设,是的中位线,所以∥,则∥平面,所以∥。又是的中点,所以⊥,则⊥。因为⊥,⊥,所以⊥面,则⊥,因此⊥面。(2)作⊥于,连。因为⊥平面,根据三垂线定理知,⊥,就是二面角的平面角。作⊥于,则∥,则是的中点,则。设,由得,,解得,在中,,则,。所以,故二面角为。解法二:(1)以直线分别为轴,建立空间直角坐标系,则所以所以所以平面由∥得∥,故:平面(2)由已知设则由与共线得:存在有得同理:设是平面的一个法向量,则令得又是平面的一个法量所以二面角的大小为(3)由(2)知,,,平面的一个法向量为。则。则点到平面的距离为21.证明:(1)设,由已知得到,且,,设切线的方程为:由得从而,解得因此的方程为:同理的方程为:又在上,所以,即点都在直线上又也在直线上,所以三点共线(2)垂线的方程为:,由得垂足,设重心所以解得由可得即为重心所在曲线方程22.解:、当时,,求得,于是当时,;而当时,.即在中单调递增,而在中单调递减.(2).对任意给定的,,由,若令,则…①,而…②(一)、先证;因为,,,又由,得.所以.(二)、再证;由①、②式中关于的对称性,不妨设.则(ⅰ)、当,则,所以,因为,,此时.(ⅱ)、当…③,由①得,,,因为所以…④同理得…⑤,于是…⑥今证明…⑦,因为,只要证,即,也即,据③,此为显然.因此⑦得证.故由⑥得.综上所述,对任何正数,皆有.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐