2018年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A. B. C. D.2.已知集合,,则A. B. C. D.3.函数的图像大致为4.已知向量,满足,,则A.4 B.3 C.2 D.05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.6.双曲线的离心率为,则其渐近线方程为A. B. C. D.7.在中,,,,则A. B. C. D.8.为计算,设计了如图的程序框图,则在空白框中应填入A. B.C. D.9.在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D.10.若在是减函数,则的最大值是A. B. C. D.11.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D.12.已知是定义域为的奇函数,满足.若,则A. B.0 C.2 D.50二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为__________.14.若满足约束条件则的最大值为__________.15.已知,则__________.16.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。17.(12分) 记为等差数列的前项和,已知,. (1)求的通项公式; (2)求,并求的最小值.18.(12分) 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(12分) 如图,在三棱锥中,,,为的中点. (1)证明:平面; (2)若点在棱上,且,求点到平面的距离.20.(12分) 设抛物线的焦点为,过且斜率为的直线与交于,两点,. (1)求的方程; (2)求过点,且与的准线相切的圆的方程.21.(12分)已知函数. (1)若,求的单调区间; (2)证明:只有一个零点.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程; (2)若曲线截直线所得线段的中点坐标为,求的斜率.23.[选修4-5:不等式选讲](10分) 设函数. (1)当时,求不等式的解集; (2)若,求的取值范围.
2018年海南省高考数学(原卷版)(文科)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片