2013年广东省高考数学试卷(理科) 一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•广东)设集合M={x|x2+2x=0,x∈R},N={x|x2﹣2x=0,x∈R},则M∪N=( ) A.{0}B.{0,2}C.{﹣2,0}D.{﹣2,0,2} 2.(5分)(2013•广东)定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是( ) A.4B.3C.2D.1 3.(5分)(2013•广东)若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是( ) A.(2,4)B.(2,﹣4)C.(4,﹣2)D.(4,2) 4.(5分)(2013•广东)已知离散型随机变量X的分布列为X123P则X的数学期望E(X)=( ) A.B.2C.D.3 5.(5分)(2013•广东)某四棱台的三视图如图所示,则该四棱台的体积是( ) A.4B.C.D.6 6.(5分)(2013•广东)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥n C.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β 7.(5分)(2013•广东)已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是( ) A.B.C.D. 8.(5分)(2013•广东)设整数n≥4,集合X={1,2,3,…,n}.令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列选项正确的是( ) A.(y,z,w)∈S,(x,y,w)∉SB.(y,z,w)∈S,(x,y,w)∈SC.(y,z,w)∉S,(x,y,w)∈SD.(y,z,w)∉S,(x,y,w)∉S 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.9.(5分)(2013•广东)不等式x2+x﹣2<0的解集为 _________ . 10.(5分)(2013•广东)若曲线y=kx+lnx在点(1,k)处的切线平行于x轴,则k= _________ . 11.(5分)(2013•广东)执行如图所示的程序框图,若输入n的值为4,则输出s的值为 _________ . 12.(5分)(2013•广东)在等差数列{an}中,已知a3+a8=10,则3a5+a7= _________ . 13.(5分)(2013•广东)给定区域D:.令点集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定 _________ 条不同的直线. 14.(5分)(2013•广东)(坐标系与参数方程选做题)已知曲线C的参数方程为(t为参数),C在点(1,1)处的切线为l,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l的极坐标方程为 _________ . 15.(2013•广东)(几何证明选讲选做题)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2,则BC= _________ . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2013•广东)已知函数,x∈R.(1)求的值;(2)若,,求. 17.(12分)(2013•广东)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率. 18.(14分)(2013•广东)如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′﹣BCDE,其中A′O=.(1)证明:A′O⊥平面BCDE;(2)求二面角A′﹣CD﹣B的平面角的余弦值. 19.(14分)(2013•广东)设数列{an}的前n项和为Sn,已知a1=1,,n∈N*.(1)求a2的值;(2)求数列{an}的通项公式;(3)证明:对一切正整数n,有. 20.(14分)(2013•广东)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值. 21.(14分)(2013•广东)设函数f(x)=(x﹣1)ex﹣kx2(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当时,求函数f(x)在[0,k]上的最大值M.
2013年广东高考(理科)数学(原卷版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片