2011年全国统一高考数学试卷(文科)(大纲版)(原卷版)

2023-10-27 · U3 上传 · 2页 · 417.9 K

( )2011年全国统一高考数学试卷文科)(大纲版)A.﹣B.﹣C.D.一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=( )11.(5分)设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=A.{1,2}B.{2,3}C.{2,4}D.{1,4}( )2.(5分)函数y=(x≥0)的反函数为( )A.4B.C.8D.A.y=(x∈R)B.y=(x≥0)C.y=4x2(x∈R)D.y=4x2(x≥0)12.(5分)已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N,若该球的半径为4,圆M的面积为4π,则圆N的面积为( )3.(5分)设向量、满足||=||=1,•=﹣,|+2|=( )A.7πB.9πC.11πD.13πA..B.C.、D.. 二、填空题(共4小题,每小题5分,满分20分)4.(5分)若变量x、y满足约束条件,则z=2x+3y的最小值为( )13.(5分)(1﹣x)10的二项展开式中,x的系数与x9的系数之差为: .14.(5分)已知a∈(π,),tanα=2,则cosα= .A.17B.14C.5D.35.(5分)下面四个条件中,使a>b成立的充分而不必要的条件是( )15.(5分)已知正方体ABCD﹣A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成的角的A.a>b+1B.a>b﹣1C.a2>b2D.a3>b3余弦值为 .6.(5分)设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sk+2﹣Sk=24,则k=( )16.(5分)已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为A.8B.7C.6D.57.(5分)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得(2,0),AM为∠F1AF2的平分线,则|AF2|= . 的图象与原图象重合,则ω的最小值等于( )三、解答题(共6小题,满分70分)A.B.3C.6D.917.(10分)设等比数列{an}的前n项和为Sn,已知a2=6,6a1+a3=30,求an和Sn.8.(5分)已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=( )A.2B.C.D.19.(5分)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )A.12种B.24种C.30种D.36种.(分)设()是周期为的奇函数,当≤≤时,()(),则105fx20x1fx=2x1﹣x=第1页(共2页)18.(12分)△ABC的内角A、B、C的对边分别为a、b、c.已知asinA+csinC﹣asinC=bsinB,21.(12分)已知函数f(x)=x3+3ax2+(3﹣6a)x+12a﹣4(a∈R)(Ⅰ)求B;(Ⅰ)证明:曲线y=f(x)在x=0处的切线过点(2,2);(Ⅱ)若A=75°,b=2,求a,c.(Ⅱ)若f(x)在x=x0处取得极小值,x0∈(1,3),求a的取值范围.19.(12分)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买22.(12分)已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为﹣甲种保险的概率为0.3,设各车主购买保险相互独立.(Ⅰ)求该地位车主至少购买甲、乙两种保险中的种的概率;11的直线l与C交于A、B两点,点P满足.(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.(Ⅰ)证明:点P在C上;(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.20.(12分)如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1. (Ⅰ)证明:SD⊥平面SAB;(Ⅱ)求AB与平面SBC所成的角的大小.第2页(共2页)

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐