2011年浙江省湖州市中考数学试卷

2023-10-31 · U1 上传 · 17页 · 199.5 K

2011年浙江省湖州市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选的不给分.1.(3分)﹣5的相反数是( )A.5 B. C.﹣5 D.2.(3分)计算a2•a3,正确的结果是( )A.2a6 B.2a5 C.a6 D.a53.(3分)根据全国第六次人口普查统计,湖州市常住人口约为2890000人,近似数2890000用科学记数法可表示为( )A.2.89×104 B.2.89×105 C.2.89×106 D.2.89×1074.(3分)如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,则tanA的值为( )A.2 B. C. D.5.(3分)数据1,2,3,4,5的平均数是( )A.1 B.2 C.3 D.46.(3分)下列事件中,必然事件是( )A.掷一枚硬币,正面朝上 B.a是实数,|a|≥0 C.某运动员跳高的最好成绩是20.1米 D.从车间刚生产的产品中任意抽取一个,是次品7.(3分)下列图形中,经过折叠不能围成一个立方体的是( )A. B. C. D.8.(3分)如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是( )A.150° B.120° C.90° D.60°9.(3分)如图,已知AB是⊙O的直径,C是AB延长线上一点,BC=OB,CE是⊙O的切线,切点为D,过点A作AE⊥CE,垂足为E,则CD:DE的值是( )A. B.1 C.2 D.310.(3分)如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为( )A. B. C. D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)当x=2时,分式的值是 .12.(4分)如图:CD平分∠ACB,DE∥AC且∠1=30°,则∠2= °.13.(4分)某校对初三(2)班40名学生体育考试中“立定跳远”项目的得分情况进行了统计,结果如下表,得分10分9分8分7分6分以下人数(人)2012521根据表中数据,若随机抽取该班的一名学生,则该学生“立定跳远”得分恰好是10分的概率是 .14.(4分)如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是 .15.(4分)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是 .16.(4分)如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片 张才能用它们拼成一个新的正方形.三、解答题(本题共有8小题,共66分)17.(6分)计算:|﹣2|﹣2sin30°++.18.(6分)因式分解:a3﹣9a.19.(6分)已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a的值.20.(8分)如图,已知AB是⊙O的直径,弦CD⊥AB,垂足为E,∠AOC=60°,OC=2.(1)求OE和CD的长;(2)求图中阴影部分的面积.21.(8分)班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)请根据图1,回答下列问题:①这个班共有 名学生,发言次数是5次的男生有 人、女生有 人;②男、女生发言次数的中位数分别是 次和 次;(2)通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图2所示,求第二天发言次数增加3次的学生人数和全班增加的发言总次数.22.(10分)如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.23.(10分)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:养殖种类成本(万元/亩)销售额(万元/亩)甲鱼2.43桂鱼22.5(1)2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额﹣成本)(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3)已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少千克?24.(12分)如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2),当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.(不必写解答过程) 2011年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选的不给分.1.【分析】只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.【解答】解:﹣5的相反数是5.故选:A.【点评】本题主要考查相反数的概念和意义:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.2.【分析】根据同底数幂的乘法法则,底数不变,指数相加.【解答】解:a2•a3=a2+3=a5.故选:D.【点评】本题考查了同底数幂的乘法,理清指数的变化是解题的关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2890000用科学记数法表示为2.89×106.故选:C.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据tanA是角A的对边比邻边,直接得出答案tanA的值.【解答】解:∵∠C=90°,BC=1,AC=2,∴tanA==.故选:B.【点评】此题主要考查了锐角三角函数的定义,熟练记忆锐角三角函数的定义是解决问题的关键.5.【分析】根据平均数求法所有数据的和除以总个数即可,直接求出即可.【解答】解:(1+2+3+4+5)÷5=3.故选:C.【点评】此题主要考查了平均数的求法,此题比较简单注意认真计算即可得出答案.6.【分析】一定会发生的事情称为必然事件.依据定义即可解答.【解答】解:A、是随机事件,故不符合题意,B、是必然事件,符合题意,C、是不可能事件,故不符合题意,D、是随机事件,故不符合题意.故选:B.【点评】本题主要考查了必然事件为一定会发生的事件,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养,难度适中.7.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:选项A、B、C经过折叠均能围成正方体;D、有“田”字格,不能折成正方体.故选:D.【点评】本题主要考查展开图折叠成几何体的知识点,注意只要有“田”字格的展开图都不是正方体的表面展开图.8.【分析】∠AOC就是旋转角,根据等边三角形的性质,即可求解.【解答】解:旋转角∠AOC=∠AOB+∠BOC=60°+90°=150°.故选:A.【点评】本题主要考查了旋转的性质,正确理解旋转角是解题的关键.9.【分析】连接OD,设⊙O的半径为r,可证得△COD∽△CAE,则===,从而得出CD:DE的值.【解答】解:如图,连接OD,∵AB是⊙O的直径,BC=OB,∴OA=OB=BC,∵CE是⊙O的切线,∴OD⊥CE,∵AE⊥CE,∴OD∥AE,∴△COD∽△CAE,∴==,∴=2.故选:C.【点评】本题考查了切线的性质,相似三角形的判定和性质,是基础知识要熟练掌握.10.【分析】通过两段的判断即可得出答案,①点P在AB上运动时,此时四边形OMPN的面积不变,可以排除B、D;②点P在BC上运动时,S减小,S与t的关系为一次函数,从而排除C.【解答】解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系.故排除C.故选:A.【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.二、填空题(本题有6小题,每小题4分,共24分)11.【分析】将x=2代入分式,即可求得分式的值.【解答】解:当x=2时,原式==1.故答案为:1.【点评】本题是一个基础题,考查了分式的值,要熟练掌握.12.【分析】已知CD平分∠ACB,∠ACB=2∠1;DE∥AC,可推出∠ACB=∠2,易得:∠2=2∠1,由此求得∠2=60°.【解答】解:∵CD平分∠ACB,∴∠ACB=2∠1;∵DE∥AC,∴∠ACB=∠2;又∵∠1=30°,∴∠2=60°.故答案为:60.【点评】本题应用的知识点为两直线平行,同位角相等;角平分线的定义.13.【分析】先求出该班人数,再根据概率公式即可求出“立定跳远”得分恰好是10分的概率.【解答】解:由表可知,共有学生20+12+5+2+1=40人;“立定跳远”得分恰好是10分的概率是=.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.【分析】根据AD∥BC,求证△AOD∽△BOC,再利用相似三角形面积的比等于相似比的平方即可求得答案.【解答】解:∵AD∥BC,∴△AOD∽△BOC,∵△AOD与△BOC的面积之比为1:9,∴=,∵AD=1,∴BC=3.故答案为:3.【点评】此题主要考查学生对相似三角形的判定与性质的理解和掌握,解答此题的关键是利用相似三角形面积的比等于相似比的平方.15.【分析】把(0,﹣3)代入抛物线的解析式求出c的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.【解答】解:把(0,﹣3)代入抛物线的解析式得:c=﹣3,∴y=x2+bx﹣3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx﹣3得:y=1+b﹣3<0

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐