2012年山东省德州市中考数学试卷

2023-10-31 · U1 上传 · 18页 · 235 K

2012年山东省德州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)下列运算正确的是( )A. B.(﹣3)2=﹣9 C.2﹣3=8 D.20=02.(3分)不一定在三角形内部的线段是( )A.三角形的角平分线 B.三角形的中线 C.三角形的高 D.三角形的中位线3.(3分)如果两圆的半径分别为4和6,圆心距为10,那么这两圆的位置关系是( )A.内含 B.外离 C.相交 D.外切4.(3分)由图中三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是( )A. B. C. D.5.(3分)已知,则a+b等于( )A.3 B. C.2 D.16.(3分)如图给定的是纸盒的外表面,下面能由它折叠而成的是( )A. B. C. D.7.(3分)为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有( )A.1组 B.2组 C.3组 D.4组8.(3分)如图,两个反比例函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为( )A.3 B.4 C. D.5二、填空题(共8小题,每小题4分,满分32分)9.(4分)﹣1,0,0.2,,3中正数一共有 个.10.(4分)化简:6a6÷3a3= .11.(4分) .(填“>”、“<”或“=”)12.(4分)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于 .13.(4分)在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是 .(只要填写一种情况)14.(4分)在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成如图不完整的统计图.其中捐100元的人数占全班总人数的25%,则本次捐款的中位数是 元.15.(4分)若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是 .16.(4分)如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2012的坐标为 .三、解答题(共7小题,满分64分)17.(6分)已知:,,求的值.18.(8分)解方程:.19.(8分)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)20.(10分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.21.(10分)如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G.(1)判断直线AG与⊙O的位置关系,并说明理由.(2)求线段AF的长.22.(10分)现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)Ax B  (2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?23.(12分)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 2012年山东省德州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】分别根据算术平方根、有理数的平方、负整数指数幂及0指数幂的运算法则进行计算即可.【解答】解:A、∵22=4,∴=2,故本选项正确;B、(﹣3)2=9,故本选项错误;C、2﹣3==,故本选项错误;D、20=1,故本选项错误.故选:A.【点评】本题考查的是算术平方根、有理数的平方、负整数指数幂及0指数幂的运算,熟知以上运算法则是解答此题的关键.2.【分析】根据三角形的高、中线、角平分线的性质解答.【解答】解:因为在三角形中,它的中线、角平分线一定在三角形的内部,而钝角三角形的高在三角形的外部.故选:C.【点评】本题考查了三角形的高、中线和角平分线,要熟悉它们的性质方可解答.3.【分析】由两圆的半径分别为4和6,圆心距为10,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵两圆的半径分别为4和6,圆心距为10,又∵4+6=10,∴这两圆的位置关系是外切.故选:D.【点评】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.4.【分析】根据平移、旋转和轴对称的性质即可得出正确结果.【解答】解:A、经过平移可得到上图,故A选项错误;B、经过平移、旋转或轴对称变换后,都不能得到上图,故B选项正确;C、经过轴对称变换可得到上图,故C选项错误;D、经过旋转可得到上图,故D选项错误.故选:B.【点评】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是沿某条直线翻折得到新图形.观察时要紧扣图形变换特点,进行分析判断.5.【分析】①+②得出4a+4b=12,方程的两边都除以4即可得出答案.【解答】解:,∵①+②得:4a+4b=12,∴a+b=3.故选:A.【点评】本题考查了解二元一次方程组的应用,关键是检查学生能否运用巧妙的方法求出答案,题目比较典型,是一道比较好的题目.6.【分析】将A、B、C、D分别展开,能和原图相对应的即为正确答案.【解答】解:A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选:B.【点评】本题考查了展开图折叠成几何体,熟悉其侧面展开图是解题的关键.7.【分析】根据三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性质,根据=即可解答.【解答】解:此题比较综合,要多方面考虑,①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;②可利用∠ACB和∠ADB的正切求出AB;③,因为△ABD∽△EFD可利用=,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选:C.【点评】本题考查相似三角形的应用和解直角三角形的应用,解答这道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形,解直角三角形即可求出.8.【分析】设P的坐标是(a,),推出A的坐标和B的坐标,求出∠APB=90°,求出PA、PB的值,根据三角形的面积公式求出即可.【解答】解:∵点P在y=上,∴|xp|×|yp|=|k|=1,∴设P的坐标是(a,)(a为正数),∵PA⊥x轴,∴A的横坐标是a,∵A在y=﹣上,∴A的坐标是(a,﹣),∵PB⊥y轴,∴B的纵坐标是,∵B在y=﹣上,∴代入得:=﹣,解得:x=﹣2a,∴B的坐标是(﹣2a,),∴PA=|﹣(﹣)|=,PB=|a﹣(﹣2a)|=3a,∵PA⊥x轴,PB⊥y轴,x轴⊥y轴,∴PA⊥PB,∴△PAB的面积是:PA×PB=××3a=.故选:C.【点评】本题考查了反比例函数和三角形面积公式的应用,关键是能根据P点的坐标得出A、B的坐标,本题具有一定的代表性,是一道比较好的题目.二、填空题(共8小题,每小题4分,满分32分)9.【分析】根据正、负数的定义对各数分析判断即可.【解答】解:﹣1,0,0.2,,3中正数是0.2,,3共有3个.故答案为:3.【点评】本题主要考查了正负数的定义,是基础题,比较简单.10.【分析】单项式除以单项式就是将系数除以系数作为结果的系数,相同字母除以相同字母作为结果的一个因式即可.【解答】解:6a6÷3a3=(6÷3)(a6÷a3)=2a3.故答案为:2a3.【点评】本题考查了整式的除法,解题的关键是牢记整式的除法的运算法则.11.【分析】求出>2,不等式的两边都减1得出﹣1>1,不等式的两边都除以2即可得出答案.【解答】解:∵>2,∴﹣1>2﹣1,∴﹣1>1∴>.故答案为:>.【点评】本题考查了不等式的性质和实数的大小比较的应用,解此题的关键是求出的范围,题目比较好,难度不大.12.【分析】由“凸轮”的外围是以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,得到∠A=∠B=∠C=60°,AB=AC=BC=1,然后根据弧长公式计算出三段弧长,三段弧长之和即为凸轮的周长.【解答】解:∵△ABC为正三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=1,∴====,根据题意可知凸轮的周长为三个弧长的和,即凸轮的周长=++=3×=π.故答案为:π【点评】此题考查了弧长的计算以及等边三角形的性质,熟练掌握弧长公式是解本题的关键.13.【分析】根据平行四边形是中心对称图形,可以针对平行四边形的各种判定方法,给出相应的条件,得出此四边形是中心对称图形.【解答】解:∵AB=CD,∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)或AB∥CD(一组对边平行且相等的四边形是平行四边形)时,或∠B+∠C=180°或∠A+∠D=180°等时,四边形ABCD是平行四边形.故此时是中心对称图象,故答案为:AD=BC或AB∥CD或∠B+∠C=180°或∠A+∠D=180°等.【点评】本题考查了中心对称图形的定义和平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.14.【分析】根据捐款100元的人数占全班总人数的25%求得总人数,然后确定捐款20元的人数,然后确定中位数即可.【解答】解:∵捐100元的15人占全班总人数的25%,∴全班总人数为15÷25%=60人,∴捐款20元的有60﹣20﹣15﹣10=15人,∴中位数是第30和第31人的平均数,均为20元∴中位数为20元.故答案为20.【点评】本题考查了中位数的求法,解题的关键是首先求得总人数和捐款20元的人数.15.【分析】当a=0时,方程是一元一次方程,方程的根可以求出,即可作出判断;当a≠0时,方程是一元二次方程,只要有实数根,则应满足:△≥0,建立关于a的不等式,求得a的取值范围即可.【解答】解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐