精品解析:2023年辽宁省大连市中考数学真题(解析版)

2023-10-31 · U1 上传 · 28页 · 1.6 M

大连市2023年初中毕业升学考试数学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间为120分钟.参考公式:抛物线的顶点为.一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有1个选项正确)1.-6的绝对值是()A.-6 B.6 C.- D.【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6.故选:B.2.如图所示的几何体中,主视图是()A. B. C. D.【答案】B【解析】【分析】根据主视图是从正面看得到的图形解答即可.【详解】解:从正面看看到的是,故选:B.【点睛】本题考查了三视图的知识,属于简单题,熟知主视图是从物体的正面看得到的视图是解题的关键.3.如图,直线,则的度数为()A. B. C. D.【答案】B【解析】【分析】先根据平行线的性质可得,再根据三角形的外角性质即可得.【详解】解:,,,,故选:B.【点睛】本题考查了平行线的性质、三角形的外角性质,熟练掌握平行线的性质是解题关键.4.某种离心机的最大离心力为.数据用科学计数法表示为()A. B. C. D.【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数.【详解】解:.故选:C.【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.5.下列计算正确的是()A. B. C. D.【答案】D【解析】【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.,故该选项不正确,不符合题意;B.,故该选项不正确,不符合题意;C.,故该选项不正确,不符合题意;D.,故该选项正确,符合题意;故选:D.【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.6.将方程去分母,两边同乘后式子为()A. B. C. D.【答案】B【解析】【分析】根据解分式方程的去分母的方法即可得.【详解】解:,两边同乘去分母,得,故选:B.【点睛】本题考查了解分式方程,熟练掌握去分母的方法是解题关键.7.已知蓄电池两端电压为定值,电流与成反比例函数关系.当时,,则当时,的值为()A. B. C. D.【答案】B【解析】【分析】利用待定系数法求出的值,由此即可得.【详解】解:由题意得:,∵当时,,,解得,,则当时,,故选:B.【点睛】本题考查了反比例函数,熟练掌握待定系数法是解题关键.8.圆心角为,半径为3的扇形弧长为()A. B. C. D.【答案】C【解析】【分析】根据弧长公式(弧长为l,圆心角度数为n,圆的半径为r),由此计算即可.【详解】解:该扇形的弧长,故选:C.【点睛】本题考查了扇形的弧长计算公式(弧长为l,圆心角度数为n,圆的半径为r),正确记忆弧长公式是解答此题的关键.9.已知抛物线,则当时,函数的最大值为()A. B. C.0 D.2【答案】D【解析】【分析】把抛物线化为顶点式,得到对称轴为,当时,函数的最小值为,再分别求出和时的函数值,即可得到答案.【详解】解:∵,∴对称轴为,当时,函数的最小值为,当时,,当时,,∴当时,函数的最大值为2,故选:D【点睛】此题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.10.某小学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪一种运动项目,随机选取100名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100 B.最喜欢篮球的人数占被调查人数的C.最喜欢足球的学生为40人 D.“排球”对应扇形的圆心角为【答案】D【解析】【分析】A.随机选取100名学生进行问卷调查,数量100就是样本容量,据此解答;B.由扇形统计图中喜欢篮球的占比解答;C.用总人数乘以即可解答;D.先用1减去足球、篮球、乒乓球的占比得到排球的占比,再利用乘以排球的占比即可解答.【详解】解:A.随机选取100名学生进行问卷调查,数量100就是样本容量,故A正确;B.由统计图可知,最喜欢篮球的人数占被调查人数的,故B正确;C.最喜欢足球的学生为(人),故C正确;D.“排球”对应扇形的圆心角为,故D错误故选:D.【点睛】本题考查扇形统计图及其相关计算、总体、个体、样本容量、样本、用样本估计总体等知识,是基础考点,掌握相关知识是解题关键.二、填空题(本题共6小题,每小题3分,共18分)11.的解集为_______________.【答案】【解析】【分析】根据不等式的性质解不等式即可求解.【详解】解:,解得:,故答案为:.【点睛】本题考查了求不等式的解集,熟练掌握不等式的性质是解题的关键.12.一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为_______________.【答案】【解析】【分析】先画出树状图,从而可得两次摸球的所有等可能的结果,再找出两次标号之和为3的结果,然后利用概率公式求解即可得.【详解】解:由题意,画出树状图如下:由图可知,两次摸球的所有等可能的结果共有4种,其中,两次标号之和为3的结果有2种,则两次标号之和为3概率为,故答案为:.【点睛】本题考查了利用列举法求概率,熟练掌握列举法解题关键.13.如图,在菱形中,为菱形的对角线,,点为中点,则的长为_______________.【答案】【解析】【分析】根据题意得出是等边三角形,进而得出,根据中位线的性质即可求解.【详解】解:∵在菱形中,为菱形的对角线,∴,,∵,∴是等边三角形,∵,∴,∵是的中点,点为中点,∴,故答案为:.【点睛】本题考查了菱形的性质,等边三角形的性质与判定,中位线的性质,熟练掌握以上知识是解题的关键.14.如图,在数轴上,,过作直线于点,在直线上截取,且在上方.连接,以点为圆心,为半径作弧交直线于点,则点的横坐标为_______________.【答案】##【解析】【分析】根据勾股定理求得,根据题意可得,进而即可求解.【详解】解:∵,,,在中,,∴,∴,为原点,为正方向,则点的横坐标为;故答案为:.【点睛】本题考查了勾股定理与无理数,实数与数轴,熟练掌握勾股定理是解题的关键.15.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出元钱,会多钱;每人出元钱,又差钱,问人数有多少.设有人,则可列方程为:_______________.【答案】【解析】【分析】设有人,每人出8元钱,会多3钱,则物品的钱数为:元,每人出7元钱,又差4钱,则物品的钱数为:元,根据题意列出一元一次方程即可求解.【详解】设有人,每人出8元钱,会多3钱,则物品的钱数为:元,每人出7元钱,又差4钱,则物品的钱数为:元,则可列方程为:故答案为:.【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键.16.如图,在正方形中,,延长至,使,连接,平分交于,连接,则的长为_______________.【答案】【解析】【分析】如图,过作于,于,由平分,可知,可得四边形是正方形,,设,则,证明,则,即,解得,,由勾股定理得,计算求解即可.【详解】解:如图,过作于,于,则四边形是矩形,,∵平分,∴,∴,∴四边形是正方形,设,则,∵,∴,∴,即,解得,∴,由勾股定理得,故答案为:.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17.计算:.【答案】【解析】【分析】先计算括号内的加法,再计算除法即可.【详解】解:【点睛】此题考查了分式的混合运算,熟练掌握分式的运算法则和顺序是解题的关键.18.某服装店的某件衣服最近销售火爆.现有两家供应商到服装店推销服装,两家服装价格相同,品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料,通过特殊操作检验出其纯度(单位:),并对数据进行整理、描述和分析.部分信息如下:Ⅰ.供应商供应材料的纯度(单位:)如下:72737475767879频数1153311Ⅱ.供应商供应材料的纯度(单位:)如下:727572757877737576777178797275Ⅲ.两供应商供应材料纯度的平均数、中位数、众数和方差如下:平均数中位数众数方差7575743.0775根据以上信息,回答下列问题:(1)表格中的_______________,_______________,_______________;(2)你认为服装店应选择哪个供应商供应服装?为什么?【答案】(1)75,75,6(2)服装店应选择A供应商供应服装.理由见解析.【解析】【分析】(1)根据平均数、众数、方差的计算公式分别进行解答即可;(2)根据方差的定义,方差越小数据越稳定即可得出答案.【小问1详解】解:B供应商供应材料纯度的平均数为,故,75出现的次数最多,故众数,方差故答案为:75,75,6【小问2详解】解:服装店应选择A供应商供应服装.理由如下:由于A、B平均值一样,B的方差比A的大,故A更稳定,所以选A供应商供应服装.【点睛】本题考查了方差、平均数、中位数、众数,熟悉相关的统计量的计算公式和意义是解答此题的关键.19.如图,在和中,延长交于,,.求证:.【答案】证明见解析【解析】【分析】由,,可得,证明,进而结论得证.【详解】证明:∵,,∴,∵,,,∴,∴.【点睛】本题考查了全等三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20.为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.【答案】【解析】【分析】设年买书资金的平均增长率为,根据2022年买书资金2020年买书资金建立方程,解方程即可得.【详解】解:设年买书资金的平均增长率为,由题意得:,解得或(不符合题意,舍去),答:年买书资金的平均增长率为.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.如图所示是消防员攀爬云梯到小明家的场景.已知,,点关于点的仰角为,则楼的高度为多少?(结果保留整数.参考数据:)【答案】楼的高度为【解析】【分析】延长交于点,依题意可得,在,根据,求得,进而根据,即可求解.【详解】解:如图所示,延长交于点,∵,∴在中,,,∵,∴∴,答:楼的高度为.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.22.为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了,女生跑了,然后男生女生都开始匀速跑步.已知男生的跑步速度为,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时.已知轴表示从开始匀速跑步到停止跑步的时间,轴代表跑过的路程,则: (1)男女跑步的总路程为_______________.(2)当男、女相遇时,求此时男、女同学距离终点的距离.【答案】(1)(2)【解析】【分析】(1)根据男女同学跑步的路程相等,求得男生跑步的路程,乘以,即可求解(2)根据题意男生从开始匀速跑步到停止跑步的直线解析式为:,求得女生的速度,进而得出解析式为,联立求得,进而即可求解.【小问1详解】解:∵开始时男生跑了,

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐