2023年安徽省初中学业水平考试数学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.的相反数是()A.5 B. C. D.2.某几何体的三视图如图所示,则该几何体为()A. B. C. D.3.下列计算正确的是()A. B. C. D.4.在数轴上表示不等式的解集,正确的是()A B. C. D.5.下列函数中,的值随值的增大而减小的是()A. B. C. D.6.如图,正五边形内接于,连接,则()A. B. C. D.7.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用,,这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A. B. C. D.8.如图,点在正方形的对角线上,于点,连接并延长,交边于点,交边的延长线于点.若,,则()A. B. C. D.9.已知反比例函数在第一象限内的图象与一次函数的图象如图所示,则函数的图象可能为()A. B. C. D.10.如图,是线段上一点,和是位于直线同侧的两个等边三角形,点分别是的中点.若,则下列结论错误的是()A.的最小值为 B.的最小值为C.周长的最小值为6 D.四边形面积的最小值为二、填空题(本大题共4小题,每小题5分,满分20分)11计算:_____________.12.据统计,年第一季度安徽省采矿业实现利润总额亿元,其中亿用科学记数法表示为_____.13.清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,是锐角的高,则.当,时,____.14.如图,是坐标原点,的直角顶点在轴的正半轴上,,反比例函数的图象经过斜边的中点.(1)__________;(2)为该反比例函数图象上的一点,若,则的值为____________.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:,其中.16.根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨,乙地降价元,已知销售单价调整前甲地比乙地少元,调整后甲地比乙地少元,求调整前甲、乙两地该商品的销售单价.四、(本大题共2小题、每小题8分、满分16分)17.如图,在由边长为1个单位长度的小正方形组成的网格中,点均为格点(网格线的交点).(1)画出线段关于直线对称的线段;(2)将线段向左平移2个单位长度,再向上平移1个单位长度,得到线段,画出线段;(3)描出线段上的点及直线上的点,使得直线垂直平分.18.【观察思考】【规律发现】请用含的式子填空:(1)第个图案中“”的个数为;(2)第个图案中“★”的个数可表示为,第个图案中“★”的个数可表示为,第个图案中“★”的个数可表示为,第个图案中“★”的个数可表示为,……,第个图案中“★”的个数可表示为______________.规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数,使得连续的正整数之和等于第个图案中“”的个数的倍.五、(本大题共2小题,每小题10分,满分20分)19.如图,是同一水平线上的两点,无人机从点竖直上升到点时,测得到点的距离为点的俯角为,无人机继续竖直上升到点,测得点的俯角为.求无人机从点到点的上升高度(精确到).参考数据:,.20.已知四边形内接于,对角线是的直径.(1)如图1,连接,若,求证;平分;(2)如图2,为内一点,满足,若,,求弦的长.六、(本题满分12分)21.端午节是中国传统节日,民间有端午节吃粽子的习俗,在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按分制进行评分,成绩(单位:分)均为不低于的整数、为了解这次活动的效果,现从这两个年级各随机抽取名学生的活动成绩作为样本进行活整理,并绘制统计图表,部分信息如下:八年级名学生活动成绩统计表成绩/分人数已知八年级名学生活动成绩的中位数为分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为分的学生数是______________,七年级活动成绩的众数为______________分;(2)______________,______________;(3)若认定活动成绩不低于分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.七、(本题满分12分)22.在中,是斜边的中点,将线段绕点旋转至位置,点在直线外,连接.(1)如图1,求的大小;(2)已知点和边上的点满足.(ⅰ)如图2,连接,求证:;(ⅱ)如图3,连接,若,求的值.八、(本题满分14分)23.在平面直角坐标系中,点是坐标原点,抛物线经过点,对称轴为直线.(1)求的值;(2)已知点在抛物线上,点的横坐标为,点的横坐标为.过点作轴的垂线交直线于点,过点作轴的垂线交直线于点.(ⅰ)当时,求与面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点,使得以为顶点的四边形的面积为?若存在,请求出点的横坐标的值;若不存在,请说明理由.
精品解析:2023年安徽中考数学真题(原卷版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片