精品解析:2022年浙江省舟山市中考数学真题(解析版)

2023-10-31 · U1 上传 · 23页 · 2 M

数学卷Ⅰ(选择题)一、选择题(本题有10小题,请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.若收入3元记为+3,则支出2元记为()A.1 B.-1 C.2 D.-2【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.2.如图是由四个相同的小立方体搭成的几何体,它的主视图是() A. B. C. D.【答案】B【解析】【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是:. 故选:B.【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.3.根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A. B. C. D.【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=.故选:A【点睛】本题考查用科学记数法表示较大数,熟练掌握科学记数法表示较大的数一般形式为,其中,是正整数,正确确定的值和的值是解题的关键.4.用尺规作一个角的角平分线,下列作法中错误的是()A. B.C. D.【答案】D【解析】【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A、如图,由作图可知:,又∵,∴,∴,∴平分.故A选项是在作角平分线,不符合题意;B、如图,由作图可知:,又∵,∴,∴,∴,∵,,∴,∴,∵,∴,∴平分.故B选项是在作角平分线,不符合题意;C、如图,由作图可知:,∴,,∴,∴,∴平分.故C选项是在作角平分线,不符合题意;D、如图,由作图可知:,又∵,∴,∴故D选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.5.估计的值在()A.4和5之间 B.3和4之间 C.2和3之间 D.1和2之间【答案】C【解析】【分析】根据无理数的估算方法估算即可.【详解】∵∴故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.6.如图,在中,,点E,F,G分别在边,,上,,,则四边形的周长是()A.32 B.24 C.16 D.8【答案】C【解析】【分析】根据,,可得四边形AEFG是平行四边形,从而得到FG=AE,AG=EF,再由,可得∠BFE=∠C,从而得到∠B=∠BFE,进而得到BE=EF,再根据四边形的周长是2(AE+EF),即可求解.【详解】解∶∵,,∴四边形AEFG是平行四边形,∴FG=AE,AG=EF,∵,∴∠BFE=∠C,∵AB=AC,∴∠B=∠C,∴∠B=∠BFE,∴BE=EF,∴四边形的周长是2(AE+EF)=2(AE+BE)=2AB=2×8=16.故选:C【点睛】本题主要考查了平行四边形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的判定和性质,等腰三角形的性质是解题的关键.7.A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是()A.且. B.且.C.且 D.且.【答案】B【解析】【分析】根据平均数、方差的定义,平均数越高成绩越好,方差越小成绩越稳定解答即可.【详解】根据平均数越高成绩越好,方差越小成绩越稳定.故选:B.【点睛】此题考查平均数、方差的定义,解答的关键是理解平均数、方差的定义,熟知方差是衡量一组数据波动大小的量,方差越小表明该组数据分布比较集中,即波动越小数据越稳定.8.上学期某班的学生都是双人同桌,其中男生与女生同桌,这些女生占全班女生的,本学期该班新转入4个男生后,男女生刚好一样多,设上学期该班有男生x人,女生y人,根据题意可得方程组为()A. B. C. D.【答案】A【解析】【分析】设上学期该班有男生x人,女生y人,则本学期男生有(x+4)人,根据题意,列出方程组,即可求解.【详解】解:设上学期该班有男生x人,女生y人,则本学期男生有(x+4)人,根据题意得:.故选:A【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.9.如图,在和中,,点A在边的中点上,若,,连结,则的长为()A. B. C.4 D.【答案】D【解析】【分析】过点E作EF⊥BC,交CB延长线于点F,过点A作AG⊥BE于点G,根据等腰直角三角形的性质可得,∠BED=45°,进而得到,,,再证得△BEF∽△ABG,可得,然后根据勾股定理,即可求解.【详解】解:如图,过点E作EF⊥BC,交CB延长线于点F,过点A作AG⊥BE于点G,在中,∠BDE=90°,,∴,∠BED=45°,∵点A在边的中点上,∴AD=AE=1,∴,∴,∵∠BED=45°,∴△AEG是等腰直角三角形,∴,∴,∵∠ABC=∠F=90°,∴EF∥AB,∴∠BEF=∠ABG,∴△BEF∽△ABG,∴,即,解得:,∴,∴.故选:D【点睛】本题主要考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理是解题的关键.10.已知点,在直线(k为常数,)上,若的最大值为9,则c的值为()A. B.2 C. D.1【答案】B【解析】分析】把代入后表示出,再根据最大值求出k,最后把代入即可.【详解】把代入得:∴∵的最大值为9∴,且当时,有最大值,此时解得∴直线解析式为把代入得故选:B.【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据的最大值为9求出k的值.卷Ⅱ(非选择题)二、填空题(本题有6小题)11.分解因式:___________.【答案】【解析】【分析】利用提公因式法进行因式分解.【详解】解:故答案为:.【点睛】本题考查提公因式法因式分解,掌握提取公因式技巧正确计算是解题关键.12.正八边形的一个内角的度数是____度.【答案】135【解析】【分析】根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数即可.【详解】正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为:1080°÷8=135°,故答案为135.13.不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是_____.【答案】【解析】【分析】直接根据概率公式求解.【详解】解:∵盒子中装有3个红球,2个黑球,共有5个球,∴从中随机摸出一个小球,恰好是黑球的概率是;故答案为:.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.如图,在直角坐标系中,的顶点C与原点O重合,点A在反比例函数(,)的图象上,点B的坐标为,与y轴平行,若,则_____. 【答案】32【解析】【分析】根据求出A点坐标,再代入即可.【详解】∵点B的坐标为∴∵,点C与原点O重合,∴∵与y轴平行,∴A点坐标为∵A在上∴,解得故答案为:.【点睛】此题主要考查了反比例函数图象上点的坐标性质;得出A点坐标是解题关键.15.某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使扩大到原来的n()倍,且钢梁保持水平,则弹簧秤读数为_______(N)(用含n,k的代数式表示).【答案】【解析】【分析】根据杠杆的平衡条件是:动力×动力臂=阻力×阻力臂,计算即可.【详解】设弹簧秤新读数为x根据杠杆的平衡条件可得:解得故答案为:.【点睛】本题是一个跨学科的题目,熟记物理公式动力×动力臂=阻力×阻力臂是解题的关键.16.如图,在廓形中,点C,D在上,将沿弦折叠后恰好与,相切于点E,F.已知,,则的度数为_______;折痕的长为_______.【答案】①.60°##60度②.【解析】【分析】根据对称性作O关于CD的对称点M,则点D、E、F、B都在以M为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可.【详解】作O关于CD的对称点M,则ON=MN连接MD、ME、MF、MO,MO交CD于N∵将沿弦折叠∴点D、E、F、B都在以M为圆心,半径为6的圆上∵将沿弦折叠后恰好与,相切于点E,F.∴ME⊥OA,MF⊥OB∴∵∴四边形MEOF中即的度数为60°;∵,∴(HL)∴∴∴∵MO⊥DC∴∴故答案为:60°;【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.三、解答题(本题有8小题)17.(1)计算:.(2)解不等式:.【答案】(1)1;(2)【解析】【分析】(1)根据零指数幂、立方根进行运算即可;(2)根据移项、合并同类项、系数化为1,进行解不等式即可.【详解】(1)原式.(2)移项得:,合并同类项得:,系数化为得:.【点睛】此题考查了零指数幂、立方根、解不等式等知识,熟练掌握运算法则是解题的关键.18.小惠自编一题:“如图,在四边形中,对角线,交于点O,,,求证:四边形是菱形”,并将自己的证明过程与同学小洁交流.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【答案】赞成小洁的说法,补充,见解析【解析】【分析】赞成小洁的说法,补充:,由四边相等的四边形是菱形即可判断.【详解】赞成小洁的说法,补充:.证明:,,,.又∵.∴,∴四边形是菱形.【点睛】本题考查菱形的判定以及线段垂直平分线的性质,熟练掌握菱形的判定是解题的关键.19.观察下面的等式:,,,……(1)按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)(2)见解析【解析】【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为.(2)由(1)的规律发现第(n+1)个式子为,用分式的加法计算式子右边即可证明.【小问1详解】解:∵第一个式子,第二个式子,第三个式子,……∴第(n+1)个式子;【小问2详解】解:∵右边==左边,∴.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.20.6月13日,某港口的潮水高度y()和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y()…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【答案】(1)①见解析;②,(2)①当时,y随x的增大而增大;②当时,y有最小值80(3)和【解析】【分析】(1)①根据表格数据在函数图像上描点连线即可;②根据函数图像估计即可;(2)从增减性、最值等方面说明即可;(3)根据图像找到y=260时所有的x值,再结合图像判断即可.【小问1详解】①②观察函数图象:当时,;当y的值最大时,;.【小问2详解】答案不唯一.①当时,y随x的增大而增大;②当时,y有最小值80

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐