2022年天津市初中学业水平考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页.试卷满分120分.考试时间100分钟.答卷前,请务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码.答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效.考试结束后,将本试卷和“答题卡”一并交回.祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算的结果等于()A. B. C.5 D.1【答案】A【解析】【分析】直接计算得到答案.【详解】==故选:A.【点睛】本题考查有理数的运算,解题的关键是熟练掌握有理数的运算知识.2.的值等于()A.2 B.1 C. D.【答案】B【解析】【分析】根据三角函数定义:正切=对边与邻边之比,进行求解.【详解】作一个直角三角形,∠C=90°,∠A=45°,如图:∴∠B=90°-45°=45°,∴△ABC是等腰三角形,AC=BC,∴根据正切定义,,∵∠A=45°,∴,故选B.【点睛】本题考查了三角函数,熟练理解三角函数的定义是解题关键.3.将290000用科学记数法表示应为()A. B. C. D.【答案】B【解析】【分析】利用科学记数法的表示方式表示即可.【详解】解:.故选:B【点睛】此题考查科学记数法表示绝对值大于1的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n与小数点移动的位数相同.解题关键要正确确定a的值以及n的值.4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选:D.【点睛】本题考查轴对称图形,理解轴对称图形的概念是解答的关键.5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】【分析】画出从正面看到的图形即可得到它的主视图.【详解】解:几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6.估计的值在()A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间【答案】C【解析】【分析】根据得到,问题得解.【详解】解:,,即在5和6之间.故选:C.【点睛】此题考查了估算无理数的大小,熟练掌握估算的方法确定的整数部分是解本题的关键.7.计算的结果是()A.1 B. C. D.【答案】A【解析】【分析】利用同分母分式的加法法则计算,约分得到结果即可.【详解】解:.故选:A.【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则.8.若点都在反比例函数的图像上,则的大小关系是()A. B. C. D.【答案】B【解析】【分析】将三点坐标分别代入函数解析式求出,然后进行比较即可.【详解】将三点坐标分别代入函数解析式,得:,解得;,解得;,解得;∵-8<2<4,∴,故选:B.【点睛】本题考查反比例函数,关键在于能熟练通过已知函数值求自变量.9.方程的两个根为()A. B. C. D.【答案】D【解析】【分析】将进行因式分解,,计算出答案.【详解】∵∴∴故选:D.【点睛】本题考查解一元二次方程,解题的关键是熟练掌握因式分解法解一元二次方程.10.如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A. B. C. D.【答案】D【解析】【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=AB=3,∵OA=5,∴OC=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.11.如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A. B. C. D.【答案】C【解析】【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.12.已知抛物线(a,b,c是常数,)经过点,有下列结论:①;②当时,y随x的增大而增大;③关于x的方程有两个不相等的实数根.其中,正确结论的个数是()A.0 B.1 C.2 D.3【答案】C【解析】【详解】由题意可知:,,,,,即,得出,故①正确;,对称轴,,时,随的增大而减小,时,随的增大而增大,故②不正确;,关于x的方程有两个不相等的实数根,故③正确.故选:C.【点睛】本题考查二次函数的图象与性质及一元二次方程根的判别式,解题的关键是熟练掌握二次函数的性质并能应用求解.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算的结果等于___________.【答案】【解析】【分析】根据同底数幂的乘法即可求得答案.【详解】解:,故答案为:.【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键.14.计算的结果等于___________.【答案】18【解析】【分析】根据平方差公式即可求解.【详解】解:,故答案为:18.【点睛】本题考查了平方差公式的应用,熟练掌握平方差公式的展开式是解题的关键.15.不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是___________.【答案】【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有9个小球,其中绿球有7个,∴摸出一个球是绿球的概率是,故答案为:.【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.若一次函数(b是常数)图象经过第一、二、三象限,则b的值可以是___________(写出一个即可).【答案】1(答案不唯一,满足即可)【解析】【分析】根据一次函数经过第一、二、三象限,可得,进而即可求解.【详解】解:∵一次函数(b是常数)的图象经过第一、二、三象限,∴故答案为:1答案不唯一,满足即可)【点睛】本题考查了已知一次函数经过的象限求参数的值,掌握一次函数图象的性质是解题的关键.17.如图,已知菱形的边长为2,,E为的中点,F为的中点,与相交于点G,则的长等于___________.【答案】【解析】【分析】连接FB,作交AB的延长线于点G.由菱形的性质得出,,解直角求出,,推出FB为的中位线,进而求出FB,利用勾股定理求出AF,再证明,得出.【详解】解:如图,连接FB,作交AB的延长线于点G.∵四边形是边长为2的菱形,∴,,∵,∴,∴,,∵E为的中点,∴,∴,即点B为线段EG的中点,又∵F为的中点,∴FB为的中位线,∴,,∴,即是直角三角形,∴.在和中,,‘∴,∴,∴,又∵,∴,∴,∴,∴.故答案为:.【点睛】本题考查菱形的性质,平行线的性质,三角函数解直角三角形,三角形中位线的性质,相似三角形的判定与性质等,综合性较强,添加辅助线构造直角是解题的关键.18.如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及的一边上的点E,F均在格点上.(Ⅰ)线段长等于___________;(Ⅱ)若点M,N分别在射线上,满足且.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)___________.【答案】①.②.见解析【解析】【分析】(Ⅰ)根据勾股定理,从图中找出EF所在直角三角形的直角边的长进行计算;(Ⅱ)由图可找到点Q,,即四边形EFBQ是正方形,因为,所以,点M在EQ上,BM、BN与圆的交点为直径端点,所以EQ与PD交点为M,通过BM与圆的交点G和圆心O连线与圆相交于H,所以H在BN上,则延长BH与PF相交点即为N.【详解】解:(Ⅰ)从图中可知:点E、F水平方向距离为3,竖直方向距离为1,所以,故答案为:;(Ⅱ)连接,与竖网格线相交于点O,O即为圆心;取格点Q(E点向右1格,向上3格),连接与射线相交于点M;连接与相交于点G;连接并延长,与相交于点H;连接并延长,与射线相交于点N,则点M,N即为所求,理由如下:连接由勾股定理算出,由题意得,四边形为正方形,在和中,,,,,,,,,从而确定了点的位置.【点睛】本题考查作图,锐角三角函数、圆周角定理,三角形全等的判定及性质,解题的关键是掌握圆周角的定理.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得___________;(2)解不等式②,得___________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________.【答案】(1)(2)(3)见解析(4)【解析】【分析】(1)通过移项、合并同类项直接求出结果;(2)通过移项直接求出结果;(3)根据在数轴上表示解集的方法求解即可;(4)根据数轴得出原不等式组的解集.【小问1详解】解:移项得:解得:故答案为:;【小问2详解】移项得:,解得:,故答案为:;【小问3详解】把不等式①和②的解集在数轴上表示出来:【小问4详解】所以原不等式组的解集为:,故答案为:.【点睛】本题考查解一元一次不等式组,熟练掌握解一元一次不等式组的一般步骤是解题的关键.20.在读书节活动中,某校为了解学生参加活动的情况,随机调查了部分学生每人参加活动的项数.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为___________,图①中m的值为___________;(2)求统计的这组项数数据的平均数、众数和中位数.【答案】(1)40,10(2)平均数是2,众数是2,中位数是2【解析】【分析】(1)根据参加2项的人数和所占百分比即可求得总人数,再利用×100%=百分比,即可求解.(2)根据平均数、众数及中位数的含义即可求解.【小问1详解】解:由图可得,参加2项的人数有18人,占总体的45%,参加4项的有4人,则(人),,故答案为:40;10.【小问2详解】平均数:,∵在这组数据中,2出现了18次,出现的次数最多,∴这组数据的众数是2,∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是2,有,∴这组数据的中位数是2.
精品解析:2022年天津市中考数学真题(解析版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片