2022年天津市初中学业水平考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页.试卷满分120分.考试时间100分钟.答卷前,请务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码.答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效.考试结束后,将本试卷和“答题卡”一并交回.祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共12题,共36分.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算的结果等于()A. B. C.5 D.12.的值等于()A.2 B.1 C. D.3.将290000用科学记数法表示应为()A. B. C. D.4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A B. C. D.6.估计的值在()A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间7.计算的结果是()A.1 B. C. D.8.若点都在反比例函数的图像上,则的大小关系是()A. B. C. D.9.方程的两个根为()A. B. C. D.10.如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A. B. C. D.11.如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A B. C. D.12.已知抛物线(a,b,c是常数,)经过点,有下列结论:①;②当时,y随x增大而增大;③关于x的方程有两个不相等的实数根.其中,正确结论的个数是()A.0 B.1 C.2 D.3第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算的结果等于___________.14.计算的结果等于___________.15.不透明袋子中装有9个球,其中有7个绿球、2个白球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是___________.16.若一次函数(b是常数)的图象经过第一、二、三象限,则b的值可以是___________(写出一个即可).17.如图,已知菱形的边长为2,,E为的中点,F为的中点,与相交于点G,则的长等于___________.18.如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及的一边上的点E,F均在格点上.(Ⅰ)线段的长等于___________;(Ⅱ)若点M,N分别在射线上,满足且.请用无刻度直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)___________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得___________;(2)解不等式②,得___________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________.20.在读书节活动中,某校为了解学生参加活动的情况,随机调查了部分学生每人参加活动的项数.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为___________,图①中m的值为___________;(2)求统计的这组项数数据的平均数、众数和中位数.21.已知为的直径,,C为上一点,连接.(1)如图①,若C为的中点,求的大小和的长;(2)如图②,若为的半径,且,垂足为E,过点D作的切线,与的延长线相交于点F,求的长.22.如图,某座山项部有一座通讯塔,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为,测得塔底B的仰角为.已知通讯塔的高度为,求这座山的高度(结果取整数).参考数据:.23.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓,超市离学生公寓,小琪从学生公寓出发,匀速步行了到阅览室;在阅览室停留后,匀速步行了到超市;在超市停留后,匀速骑行了返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离与离开学生公寓的时间之间的对应关系.请根据相关信息,解答下列问题:(1)填表:离开学生公寓的时间/585087112离学生公寓的距离/0.51.6(2)填空:①阅览室到超市的距离为___________;②小琪从超市返回学生公寓的速度为___________;③当小琪离学生公寓的距离为时,他离开学生公寓的时间为___________.(3)当时,请直接写出y关于x的函数解析式.24.将一个矩形纸片放置在平面直角坐标系中,点,点,点,点P在边上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且,点O的对应点落在第一象限.设.(1)如图①,当时,求的大小和点的坐标;(2)如图②,若折叠后重合部分为四边形,分别与边相交于点E,F,试用含有t的式子表示的长,并直接写出t的取值范围;(3)若折叠后重合部分的面积为,则t的值可以是___________(请直接写出两个不同的值即可).25.已知抛物线(a,b,c是常数,)的顶点为P,与x轴相交于点和点B.(1)若,①求点P的坐标;②直线(m是常数,)与抛物线相交于点M,与相交于点G,当取得最大值时,求点M,G的坐标;(2)若,直线与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当的最小值为5时,求点E,F的坐标.
精品解析:2022年天津市中考数学真题(原卷版)
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片